Danh mục

Tài liệu ôn luyện thi ĐH môn toán

Số trang: 24      Loại file: pdf      Dung lượng: 241.99 KB      Lượt xem: 16      Lượt tải: 0    
10.10.2023

Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số." Theo quan điểm chính thống, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng Luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong Triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh...
Nội dung trích xuất từ tài liệu:
Tài liệu ôn luyện thi ĐH môn toán NGUY N ð C TU NT ÔN LUY N THIMÔNMÔN TOÁN Hà n i, 1 - 2005 T ôn luy n thi ñ i h c môn toán Chương 1: Phương trình và b t phương trình Bài 1: PHƯƠNG TRÌNH B C NH T VÀ B C HAII. Cách gi i ax + b = 0, a,b ∈ IR. 1) Phương trình b c nh t: b N u a ≠ 0 thì phương trình có nghi m duy nh t x = - • . a • N u a = 0, b ≠ 0 thì phương trình vô nghi m. • N u a = b = 0 thì phương trình nghi m ñúng v i m i x ∈ IR. ax2 + bx + c = 0, a ≠ 0. 2) Phương trình b c hai: • N u ∆ = b – 4ac < 0 phương trình vô nghi m. 2 b • N u ∆ = 0 phương trình có nghi m kép x1 = x 2 = - . 2a −b± ∆ • N u ∆ > 0 phương trình có hai nghi m phân bi t x 1, 2 = . 2aII. ð nh lí Viét và h qu v d u các nghi m 1) ð nh lí Viét : N u phương trình ax2 + bx + c = 0, a ≠ 0 có hai nghi m x1 , x 2 thì b c S = x1 + x 2 = - và P = x1.x 2 = . a a 2) H qu : Phương trình b c hai ax2 + bx + c = 0, a ≠ 0 có hai nghi m: ∆ ≥ 0  c 0 a    ∆ ≥ 0 ∆ ≥ 0   c c Cùng dương ⇔  > 0 Cùng âm ⇔  > 0 a a b b − a > 0 − a < 0  III. ð nh lí v d u c a tam th c b c hai Cho tam th c b c hai f(x) = ax2 + bx + c, a ≠ 0 ta có 1. ð nh lí thu n: • N u ∆ = b2 – 4ac < 0 thì a.f(x) > 0 v i ∀ x. b • N u ∆ = 0 thì a.f(x) > 0 v i ∀ x ≠ - . 2a • N u ∆ > 0 khi ñó f(x) có hai nghi m phân bi t x1 < x2 và a.f(x) > 0 v i x ngoài [ x1 ; x 2 ] . a.f(x) < 0 v i x1 < x < x 2 . 2. ð nh lí ñ o: N u t n t i s α sao cho a.f( α ) < 0 thì tam th c có hai nghi m phân bi t và s α n m trong kho ng hai nghi m ñó: x1 < α < x 2 . 1 Nguy n ð c Tu n l p 44C1 ð i h c Th y l i Hà n i T ôn luy n thi ñ i h c môn toán IV. ng d ng 1. ði u ki n ñ f(x) = ax2 + bx + c không ñ i d u v i m i x a = b = 0 a = b = 0   c > 0 c ≥ 0 f(x) ≥ 0 v i ∀ x ⇔  f(x) > 0 v i ∀ x ⇔ a > 0 a > 0    ∆ < 0  ∆ ≤ 0   a = b = 0 a = b = 0   c < 0 c ≤ 0 f(x) ≤ 0 v i ∀ x ⇔  f(x) ...

Tài liệu được xem nhiều: