Danh mục

thi thử đại học môn toán năm 2012_Đề số 1-10

Số trang: 24      Loại file: doc      Dung lượng: 1.59 MB      Lượt xem: 14      Lượt tải: 0    
tailieu_vip

Phí tải xuống: 17,000 VND Tải xuống file đầy đủ (24 trang) 0
Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo đề thi - kiểm tra thi thử đại học môn toán năm 2012_đề số 1-10, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
thi thử đại học môn toán năm 2012_Đề số 1-10 Ôn thi Đại học ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN ( ĐỀ 1 )I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Cho hàm số y = − x 3 + 3 x 2 − 2 (C)Câu I (2 điểm) 1) Khảo sát sự biến thiên và vẽ đồ thị (C). 2) Tìm trên đường thẳng (d): y = 2 các điểm mà từ đó có th ể kẻ đ ược ba ti ếp tuy ến đến đồ thị (C).Câu II (2 điểm) 1) Giải phương trình: 2x + 3 + x + 1 = 3x + 2 2x 2 + 5x + 3 − 16 . 3π � π� � � 2) Giải phương trình: 2 2cos2x + sin2x cos� + � 4sin� + � 0 . − = x x 4 � 4� � � π 2Câu III (1 điểm) Tính tích phân: I = (sin4 x + cos4 x )(sin6 x + cos6 x )dx . 0Câu IV (2 điểm) Cho hình chóp S.ABC, đáy ABC là tam giác vuông tại B có AB = a, BC = a 3 , SA vuông góc với mặt phẳng (ABC), SA = 2a. G ọi M, N l ần l ượt là hình chi ếu vuông góc của điểm A trên các cạnh SB và SC. Tính th ể tích c ủa kh ối chóp A.BCNM.Câu V (1 điểm) Cho a, b, c, d là các số dương. Chứng minh rằng: 1 1 1 1 1 + + + 4 4 4 4 4 4 4 4 4 4 4 4 abcd a + b + c + abcd b + c + d + abcd c + d + a + abcd d + a + b + abcdII. PHẦN RIÊNG (3,0 điểm) A. Theo chương trình chuẩn.Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, gọi A, B là các giao điểm của đ ường th ẳng (d): 2x – y – 5 = 0 và đường tròn (C’): x 2 + y 2 − 20 x + 50 = 0 . Hãy viết phương trình đường tròn (C) đi qua ba điểm A, B, C(1; 1). 2) Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4; 5; 6). Vi ết ph ương trình mặt phẳng (P) qua A, cắt các trục tọa độ lần lượt tại I, J, K mà A là trực tâm của tam giác IJK.Câu VII.a (1 điểm) Chứng minh rằng nếu a + bi = (c + di )n thì a 2 + b 2 = (c 2 + d 2 )n . B. Theo chương trình nâng caoCâu VI.b (2 điểm) 3 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có di ện tích b ằng , A(2; 2 –3), B(3; –2), trọng tâm của ∆ ABC nằm trên đường thẳng (d): 3x – y –8 = 0. Viết phương trình đường tròn đi qua 3 điểm A, B, C. 2) Trong không gian với hệ trục tọa độ Oxyz, cho bốn đi ểm A(4;5;6); B(0;0;1); C(0;2;0); D(3;0;0). Chứng minh các đường thẳng AB và CD chéo nhau. Vi ết ph ương trình đường thẳng (D) vuông góc với mặt phẳng Oxy và c ắt các đ ường th ẳng AB, CD. điểm) Giải hệ phươngCâu VII.b (1 trình: log4(x 2 + y 2) − log4(2x ) + 1= log4(x + 3y) �� x log4(xy + 1) − log4(4y 2 + 2y − 2x + 4) = log4 � � 1 − y �� Trang 1Ôn thi Đại học ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN ( ĐỀ 2 )I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I. (2đ): Cho hàm số y = x 3 − 3mx 2 + 9x − 7 có đồ thị (Cm). 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 0 . 2. Tìm m để (Cm) cắt trục Ox tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng.Câu II. (2đ): 1. Giải phương trình: sin2 3x − cos2 4x = sin2 5x − cos2 6x 21− x − 2x + 1 2. Giải bất phương trình: 0 2x − 1 x + 7 − 5− x 2 3Câu III. (1đ) Tính giới hạn sau: A = lim x −1 x1Câu IV (1đ): Cho hình chóp S.ABCD có đáy ABCD là hình chữ nh ật; SA ⊥ (ABCD); AB = SA = 1; AD = 2 . Gọi M, N lần lượt là trung điểm của AD và SC; I là giao đi ểm c ủa BM và AC. Tính thể tích khối tứ diện ANIB.Câu V (1đ): Biết (x; y ) là nghiệm của bất phương trình: 5x 2 + 5y 2 − 5x − 15y + 8 0 . Hãy tìm giá trị lớn nhất của biểu thức F = x + 3y .II. PHẦN TỰ CHỌN (3đ) A. Theo chương trình chuẩn:Câu VI.a (2đ) 2 2 1. Trong mặt phẳng với hệ toạ độ Oxy, cho elip (E): x + y = 1. A, B là các điểm trên 25 16 AF1+BF2 = 8, với F1;F2 là các tiêu điểm. Tính AF2 + BF1 . (E) sao cho: 2. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (α ) : 2x − y − z − 5 = 0 và điểm A(2 ...

Tài liệu được xem nhiều: