Toán 12: Thể tích khối chóp-P1 (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần Phương
Số trang: 3
Loại file: pdf
Dung lượng: 171.81 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tài liệu "Toán 12: Thể tích khối chóp-P1 (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần Phương" gồm các bài tập kèm theo hướng dẫn giải nhằm giúp các bạn kiểm tra, củng cố lại kiến thức về thể tích khối chóp. Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Toán 12: Thể tích khối chóp-P1 (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần PhươngKhóa học Toán 12 – Thầy Lê Bá Trần Phương Thể tích khối chóp THỂ TÍCH KHỐI CHÓP (Phần 01) ðÁP ÁN BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƯƠNG Các bài tập trong tài liệu này ñược biên soạn kèm theo bài giảng Thể tích khối chóp (phần 01) thuộc khóa học Toán 12 – Thầy Lê Bá Trần Phương tại website Hocmai.vn ñể giúp các Bạn kiểm tra, củng cố lại các kiến thức ñược giáo viên truyền ñạt trong bài giảng Thể tích khối chóp (phần 01). ðể sử dụng hiệu quả, Bạn cần học trước Bài giảng sau ñó làm ñầy ñủ các bài tập trong tài liệu này. Bài 1. Cho hình chóp S.ABCD có ñáy là hình vuông cạnh a , SA vuông góc với ñáy và SA= a . Gọi M, N lần lượt là trung ñiểm của SB và SD; I là giao ñiểm của SC và mặt phẳng (AMN). Chứng minh SC vuông góc với AI và tính thể tích khối chóp MBAI. Giải: AM ⊥ BC , ( BC ⊥ SA, BC ⊥ AB) Ta có ⇒ AM ⊥ SC (1) AM ⊥ SB, ( SA = AB ) Tương tự ta có AN ⊥ SC (2) Từ (1) và (2) suy ra AI ⊥ SC S Vẽ IH song song với BC cắt SB tại H. Khi ñó IH vuông góc với (AMB) 1 H Suy ra VABMI = S ABM .IH 3 I M 2 a Ta có S ABM = 4 N 2 2 IH SI SI .SC SA a 1 1 1 B = = = 2 = 2 = ⇒ IH = BC = a A BC SC SC 2 SA + AC 2 a + 2a 2 3 3 3 1 a2 a a3 Vậy VABMI = = 3 4 3 36 D C Bài 2. Cho hình chóp S.ABCD có ñáy ABCD là hình chữ nhật với AB = a , AD = 2a . Cạnh SA vuông góc với mặt phẳng ñáy , cạnh bên SB tạo với mặt phắng ñáy một góc 600 .Trên cạnh SA lấy ñiểm M sao a 3 cho AM = , mặt phẳng ( BCM) cắt cạnh SD tại N .Tính thể tích khối chóp S.BCNM 3 Giải: Tính thể tích hình chóp SBCMN. ( BCM)// AD nên mặt phẳng này cắt mp( SAD) theo giao tuyến MN // AD BC ⊥ AB Ta có : ⇒ BC ⊥ BM . BC ⊥ SA Tứ giác BCMN là hình thang vuông có BM là ñường cao a 3 a 3− 0 MN SM MN 3 =2 Ta có SA = AB tan60 = a 3 , = ⇔ = AD SA 2a a 3 3 Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 1 -Khóa học Toán 12 – Thầy Lê Bá Trần Phương Thể tích khối chóp 4a 2a Suy ra MN = . BM = 3 3 Diện tích hình thang BCMN là : 4a BC + MN 2a + 3 2a 10a 2 S = BM = = 2 2 3 3 3 Hạ AH ⊥ BM . Ta có SH ⊥ BM và BC ⊥ (SAB) ⇒ BC ⊥ SH. Vậy SH ⊥ ( BCNM) ⇒ SH là ñường cao của khối chóp SBCNM AB AM 1 Trong tam giác SBA ta có SB = 2a , = = . SB MS 2 Vậy BM là phân giác của góc SBA ⇒ ∠SBH = 300 ⇒ SH = SB.sin300 = a 1 10 3a 3 Gọi V là thể tích chóp SBCNM ta có V = SH .(dtBCNM ) = 3 27 Bài 3. Cho hình chóp S.ABCD có ñáy ABCD là hình vuông cạnh a, SA vuông góc với ñáy. Góc giữa mặt phẳng (SBC) và (SCD) bằng 600. Tính theo a thể tích khối chóp S.ABCD. Giải: S Gọi M là hình chiếu vuông góc của B lên SC. Chứng minh ñược góc DMB = 1200 và ∆ DMB cân tại M 2 Tính ñược: DM2 = a2 3 1 1 1 M ∆ SCD vuông tại D và DM là ñường cao nên 2 = 2 + 2 DM DS DC A B Suy ra DS = a 2 . Tam giác ASD vuông tại A suy ra SA = a. 1 Vậy thể tích S.ABCD bằng a3 3 D C Bài 4. Cho hình chóp S.ABC có SC ⊥ (ABC) và ∆ABC vuông tại B. Biết rằng AB = a, AC = a 3 ( a > 0 ) và góc giữa hai mặt phẳng (SAB) và (SAC) bằng α v ...
Nội dung trích xuất từ tài liệu:
Toán 12: Thể tích khối chóp-P1 (Đáp án Bài tập tự luyện) - GV. Lê Bá Trần PhươngKhóa học Toán 12 – Thầy Lê Bá Trần Phương Thể tích khối chóp THỂ TÍCH KHỐI CHÓP (Phần 01) ðÁP ÁN BÀI TẬP TỰ LUYỆN Giáo viên: LÊ BÁ TRẦN PHƯƠNG Các bài tập trong tài liệu này ñược biên soạn kèm theo bài giảng Thể tích khối chóp (phần 01) thuộc khóa học Toán 12 – Thầy Lê Bá Trần Phương tại website Hocmai.vn ñể giúp các Bạn kiểm tra, củng cố lại các kiến thức ñược giáo viên truyền ñạt trong bài giảng Thể tích khối chóp (phần 01). ðể sử dụng hiệu quả, Bạn cần học trước Bài giảng sau ñó làm ñầy ñủ các bài tập trong tài liệu này. Bài 1. Cho hình chóp S.ABCD có ñáy là hình vuông cạnh a , SA vuông góc với ñáy và SA= a . Gọi M, N lần lượt là trung ñiểm của SB và SD; I là giao ñiểm của SC và mặt phẳng (AMN). Chứng minh SC vuông góc với AI và tính thể tích khối chóp MBAI. Giải: AM ⊥ BC , ( BC ⊥ SA, BC ⊥ AB) Ta có ⇒ AM ⊥ SC (1) AM ⊥ SB, ( SA = AB ) Tương tự ta có AN ⊥ SC (2) Từ (1) và (2) suy ra AI ⊥ SC S Vẽ IH song song với BC cắt SB tại H. Khi ñó IH vuông góc với (AMB) 1 H Suy ra VABMI = S ABM .IH 3 I M 2 a Ta có S ABM = 4 N 2 2 IH SI SI .SC SA a 1 1 1 B = = = 2 = 2 = ⇒ IH = BC = a A BC SC SC 2 SA + AC 2 a + 2a 2 3 3 3 1 a2 a a3 Vậy VABMI = = 3 4 3 36 D C Bài 2. Cho hình chóp S.ABCD có ñáy ABCD là hình chữ nhật với AB = a , AD = 2a . Cạnh SA vuông góc với mặt phẳng ñáy , cạnh bên SB tạo với mặt phắng ñáy một góc 600 .Trên cạnh SA lấy ñiểm M sao a 3 cho AM = , mặt phẳng ( BCM) cắt cạnh SD tại N .Tính thể tích khối chóp S.BCNM 3 Giải: Tính thể tích hình chóp SBCMN. ( BCM)// AD nên mặt phẳng này cắt mp( SAD) theo giao tuyến MN // AD BC ⊥ AB Ta có : ⇒ BC ⊥ BM . BC ⊥ SA Tứ giác BCMN là hình thang vuông có BM là ñường cao a 3 a 3− 0 MN SM MN 3 =2 Ta có SA = AB tan60 = a 3 , = ⇔ = AD SA 2a a 3 3 Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 1 -Khóa học Toán 12 – Thầy Lê Bá Trần Phương Thể tích khối chóp 4a 2a Suy ra MN = . BM = 3 3 Diện tích hình thang BCMN là : 4a BC + MN 2a + 3 2a 10a 2 S = BM = = 2 2 3 3 3 Hạ AH ⊥ BM . Ta có SH ⊥ BM và BC ⊥ (SAB) ⇒ BC ⊥ SH. Vậy SH ⊥ ( BCNM) ⇒ SH là ñường cao của khối chóp SBCNM AB AM 1 Trong tam giác SBA ta có SB = 2a , = = . SB MS 2 Vậy BM là phân giác của góc SBA ⇒ ∠SBH = 300 ⇒ SH = SB.sin300 = a 1 10 3a 3 Gọi V là thể tích chóp SBCNM ta có V = SH .(dtBCNM ) = 3 27 Bài 3. Cho hình chóp S.ABCD có ñáy ABCD là hình vuông cạnh a, SA vuông góc với ñáy. Góc giữa mặt phẳng (SBC) và (SCD) bằng 600. Tính theo a thể tích khối chóp S.ABCD. Giải: S Gọi M là hình chiếu vuông góc của B lên SC. Chứng minh ñược góc DMB = 1200 và ∆ DMB cân tại M 2 Tính ñược: DM2 = a2 3 1 1 1 M ∆ SCD vuông tại D và DM là ñường cao nên 2 = 2 + 2 DM DS DC A B Suy ra DS = a 2 . Tam giác ASD vuông tại A suy ra SA = a. 1 Vậy thể tích S.ABCD bằng a3 3 D C Bài 4. Cho hình chóp S.ABC có SC ⊥ (ABC) và ∆ABC vuông tại B. Biết rằng AB = a, AC = a 3 ( a > 0 ) và góc giữa hai mặt phẳng (SAB) và (SAC) bằng α v ...
Tìm kiếm theo từ khóa liên quan:
Toán lớp 12 Bài tập Toán 12 Hình học 12 Chuyên đề hình học không gian Thể tích khối chóp Bài tập hình họcGợi ý tài liệu liên quan:
-
73 trang 118 0 0
-
Ứng dụng tâm tỉ cự giải bài toán cực trị Hình học
10 trang 49 0 0 -
150 đề thi thử đại học môn Toán
155 trang 49 0 0 -
Đề thi chuyên toán Quang Trung 2006-2009 có đáp án đề chung
6 trang 37 0 0 -
9 trang 36 0 0
-
Đề cương ôn thi THPT QG môn Toán năm 2022 - Nguyễn Hoàng Việt
193 trang 31 0 0 -
Ôn tập Phương pháp tọa độ trong không gian
13 trang 30 0 0 -
GIÁO TRÌNH MATLAB (phụ lục lệnh và hàm)
8 trang 29 0 0 -
Bài tập - Tính diện tích hình phẳng
2 trang 26 0 0 -
Đề thi thử ĐH môn Toán - THPT Thuận Thành Số 1 lần 1 (2012-2013)
6 trang 25 0 0