Danh mục

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ĐỀ THI THỬ ĐẠI HỌC NĂM 2010-2011

Số trang: 1      Loại file: pdf      Dung lượng: 47.11 KB      Lượt xem: 10      Lượt tải: 0    
tailieu_vip

Phí tải xuống: miễn phí Tải xuống file đầy đủ (1 trang) 0
Xem trước 1 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu trường đại học khoa học tự nhiên đề thi thử đại học năm 2010-2011, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ĐỀ THI THỬ ĐẠI HỌC NĂM 2010-2011 TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ĐỀ THI THỬ ĐẠI HỌC NĂM 2010-2011TRƯỜNG THPT CHUYÊN KHTN Môn: TOÁN (Đợt 3) Thời gian làm bài 180 phút, không kể thời gian phát đề 2 x − 2m + 1Câu I. Cho hàm số y = (Cm) x − m −1 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m=1 2) Cho A(1,2). Tìm các giá trị của m sao cho tồn tại một đường thẳng qua A cắt đồ thị (Cm) tại hai điểm phân biệt M,N sao cho các tiếp tuyến tại M,N của đồ thị song song với nhau.Câu II. 1) Giải phương trình: 2cos2 x + 4 tan 2 x + 9 cot 2 x + = 14 sin 2 x 2) Giải phương trình log 2 3x + log 3 2 x = log 2 3x + log 2 3 x log 3 2 x 2Câu III. 1) Tìm giá trị lớn nhất của hàm số x + 4 2− x 4 y= 4 x + 4 1− x 2) Tính nguyên hàm sin xdx I =∫ sin 2 x − 3cos 2 x − 1Câu IV. 1) Cho lăng trụ ABC.A’B’C’, biết A’ABC là chóp tam giác đều có cạnh đáy a và khoảng cách giữa cạnh bên và cạnh đáy đố i diện bằng k. Tính thể tích lăng trụ. 2) Trong hệ toạn độ Oxyz cho H(1,3,2). Viết phương trình mặt phẳng (P) đi qua H cắt Ox, Oy, Oz tại A, B, C sao cho H là trực tâm tam giác ABC. 3) Trong hệ tạo độ Oxy cho đường tròn (C ) : ( x − 1) 2 + ( y + 1)2 = 25 viết phương trình đường thẳng qua M(7,3) cắt (C) tại A,B sao cho MA=3MB.Câu V. Cho đa giác đều 12 đỉnh. Hỏi có bao nhiêu tam giác tù có đỉnh là 3 đỉnh của đagiác đã cho. ____________HẾT____________

Tài liệu được xem nhiều: