Danh mục

Tuyển tập đề thi Đại học môn Toán khối B qua các năm

Số trang: 8      Loại file: pdf      Dung lượng: 1.37 MB      Lượt xem: 6      Lượt tải: 0    
Thu Hiền

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tuyển tập đề thi Đại học môn Toán khối B qua các năm nhằm mục đích giúp các bạn học sinh có thêm tài liệu tham khảo, chuẩn bị tốt kỳ thi Đại học sắp tới. Chúc các bạn có kỳ thi thành công.
Nội dung trích xuất từ tài liệu:
Tuyển tập đề thi Đại học môn Toán khối B qua các năm BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2006 Môn: TOÁN, khối B ĐỀ CHÍNH THỨC Thời gian làm bài: 180 phút, không kể thời gian phát đềPHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINHCâu I (2 điểm) x2 + x −1 Cho hàm số y = . x+2 1. Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số đã cho. 2. Viết phương trình tiếp tuyến của đồ thị ( C ) , biết tiếp tuyến đó vuông góc với tiệm cận xiên của ( C ) .Câu II (2 điểm) ⎛ x⎞ 1. Giải phương trình: cotgx + sin x ⎜1 + tgxtg ⎟ = 4. ⎝ 2⎠ 2. Tìm m để phương trình sau có hai nghiệm thực phân biệt: x 2 + mx + 2 = 2x + 1.Câu III (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho điểm A(0; 1; 2) và hai đường thẳng: ⎧x = 1 + t x y −1 z + 1 ⎪ d1 : = = , d 2 : ⎨ y = −1 − 2t 2 1 −1 ⎪z = 2 + t. ⎩ 1. Viết phương trình mặt phẳng (P) qua A, đồng thời song song với d1 và d2. 2. Tìm tọa độ các điểm M thuộc d1, N thuộc d2 sao cho ba điểm A, M, N thẳng hàng.Câu IV (2 điểm) ln 5 dx 1. Tính tích phân: I = ∫ e + 2e− x − 3x . ln 3 2. Cho x, y là các số thực thay đổi. Tìm giá trị nhỏ nhất của biểu thức: A= ( x − 1)2 + y2 + ( x + 1)2 + y2 + y − 2 .PHẦN TỰ CHỌN: Thí sinh chọn câu V.a hoặc câu V.bCâu V.a. Theo chương trình THPT không phân ban (2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn ( C ) : x 2 + y 2 − 2x − 6y + 6 = 0 và điểm M ( − 3; 1) . Gọi T1 và T2 là các tiếp điểm của các tiếp tuyến kẻ từ M đến ( C ) . Viết phương trình đường thẳng T1T2 . 2. Cho tập hợp A gồm n phần tử ( n ≥ 4 ) . Biết rằng, số tập con gồm 4 phần tử của A bằng 20 lần số tập con gồm 2 phần tử của A. Tìm k ∈ {1, 2,..., n} sao cho số tập con gồm k phần tử của A là lớn nhất.Câu V.b. Theo chương trình THPT phân ban thí điểm (2 điểm) ( ) 1. Giải bất phương trình: log5 4x + 144 − 4 log5 2 < 1 + log5 2x − 2 + 1 . ( ) 2. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = a 2 , SA = a và SA vuông góc với mặt phẳng ( ABCD ) . Gọi M và N lần lượt là trung điểm của AD và SC; I là giao điểm của BM và AC. Chứng minh rằng mặt phẳng (SAC) vuông góc với mặt phẳng (SMB). Tính thể tích của khối tứ diện ANIB. ----------------------------- Hết -----------------------------Cán bộ coi thi không giải thích gì thêm.Họ và tên thí sinh .................................................................... số báo danh.............................................. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2007 Môn thi: TOÁN, khối B ĐỀ CHÍNH THỨC Thời gian làm bài: 180 phút, không kể thời gian phát đềPHẦN CHUNG CHO TẤT CẢ THÍ SINHCâu I. (2 điểm) Cho hàm số: y = − x 3 + 3x 2 + 3(m 2 − 1)x − 3m 2 − 1 (1), m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1. 2. Tìm m để hàm số (1) có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số (1) cách đều gốc tọa độ O.Câu II. (2 điểm) 1. Giải phương trình: 2sin 2 2x + sin 7x − 1 = sin x. 2. Chứng minh rằng với mọi giá trị dương của tham số m, phương trình sau có hai nghiệm thực phân biệt: x 2 + 2x − 8 = m ( x − 2 ) .Câu III. (2 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) : x 2 + y 2 + z 2 − 2x + 4y + 2z − 3 = 0 vàmặt phẳng ( P ) : 2x − y + 2z − 14 = 0. 1. Viết phương trình mặt phẳng ( Q ) chứa trục Ox và cắt ( S ) theo một đường tròn có bán kính bằng 3. 2. Tìm tọa độ điểm M thuộc mặt cầu ( S ) sao cho khoảng cách từ M đến mặt phẳng ( P ) lớn nhất.Câu IV. (2 điểm) 1. Cho hình phẳng H giới hạn bởi các đường: y = x ln x, y = 0, x = e. Tính thể tích của khối tròn xoay tạo thành khi quay hình H quanh trục Ox. 2. Cho x, y, z là ba số thực dương thay đổi. Tìm giá trị nhỏ nhất của biểu thức: ⎛x 1 ⎞ ⎛y 1 ⎞ ⎛z 1 ⎞ P = x ⎜ + ⎟ + y ⎜ + ⎟ + z ⎜ + ⎟. ⎝ 2 yz ⎠ ⎝ 2 zx ⎠ ⎝ 2 xy ⎠PHẦN TỰ CHỌN (Thí sinh chỉ được chọn làm một trong hai câu: V.a hoặc V.b)Câu V.a. Theo chương trình THPT không phân ban (2 điểm) 1. Tìm hệ số của số hạng chứa x10 trong khai triển nhị thức Niutơn của (2 + x) n , biết: 3n C0 − 3n −1 C1 + 3n − 2 Cn − 3n −3 C3 + ... + ( −1) Cn = 2048 2 n n n n n (n là số nguyên dương, C k là số tổ hợp chập k của n phần tử). n 2. Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A ( 2; 2 ) và các đường thẳng: ...

Tài liệu được xem nhiều: