Thông tin tài liệu:
Tài liệu tham khảo chuyên đề ôn thi toán học về Ứng dụng của hệ thức Vi-ét trong giải toán
Nội dung trích xuất từ tài liệu:
Ứng dụng của hệ thức Vi-ét trong giải toán Nội dung chính của chuyên đề gồm : I. Ứng dụng 1 Nhẩm nghiệm của phương trình bậc hai một ẩn II. Ứng dụng 2 Lập phương trình bậc hai III. Ứng dụng 3 Tìm hai số biết tổng và tích của chúng IV. Ứng dụng 4 Tính giá trị của biểu thức nghiệm của phương trình V. Ứng dụng 5 Tìm hệ thức liên hệ giữa hai nghiệm của phương trình sao cho hai nghiệm này không phụ thuộc vào tham số VI. Ứng dụng 6 Tìm giá trị tham số của phương trình thỏa mãn biểu thức chứa nghiệm VII. Ứng dụng 7 Xác định dấu các nghiệm của phương trình bậc hai VIII. Ứng dụng 8 Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức nghiệm B. NỘI DUNG CHUYÊN ĐỀ : ỨNG DỤNG CỦA HỆ THỨC VI-ÉT TRONG GIẢI TOÁN Cho phương trình bậc hai: ax2 + bx + c = 0 (a≠ 0) (*) −b − ∆ −b + ∆ Có hai nghiệm x1 = ; x2 = 2a 2a −b − ∆ − b + ∆ −2b −b Suy ra: x1 + x2 = = = 2a 2a a (−b − ∆ )(−b + ∆ ) b − ∆ 4ac c 2 x1 x2 = = = 2 = 4a 2 4a 2 4a a −b Vậy đặt : - Tổng nghiệm là S : S = x1 + x2 = a c - Tích nghiệm là P : P = x1 x2 = a Như vậy ta thấy giữa hai nghiệm của phương trình (*) có liên quan chặt chẽ với các hệ số a, b,c. Đây chính là nội dung của Định lí VI-ÉT, sau đây ta tìm hiểu một số ứng dụng của định lí này tronggiải toán.I. NHẨM NGHIỆM CỦA PHƯƠNG TRÌNH :1. Dạng đặc biệt:Xét phương trình (*) ta thấy : a) Nếu cho x = 1 thì ta có (*) a.12 + b.1 + c = 0 a + b + c = 0 c Như vây phương trình có một nghiệm x1 = 1 và nghiệm còn lại là x2 = a b) Nếu cho x = − 1 thì ta có (*) a.( − 1)2 + b( − 1) + c = 0 a − b + c = 0 −c Như vậy phương trình có một nghiệm là x1 = −1 và nghiệm còn lại là x2 = aVí dụ: Dùng hệ thức VI-ÉT để nhẩm nghiệm của các phương trình sau: 1) 2 x 2 + 5 x + 3 = 0 (1) 2) 3 x 2 + 8 x − 11 = 0 (2)Ta thấy : −3 Phương trình (1) có dạng a − b + c = 0 nên có nghiệm x1 = −1 và x2 = 2 −11 Phương trình (2) có dạng a + b + c = 0 nên có nghiệm x1 = 1 và x2 = 3Bài tập áp dụng: Hãy tìm nhanh nghiệm của các phương trình sau: 1. 35 x 2 − 37 x + 2 = 0 2. 7 x 2 + 500 x − 507 = 0 3. x 2 − 49 x − 50 = 0 4. 4321x 2 + 21x − 4300 = 02. Cho phương trình , có một hệ số chưa biết, cho trước một nghiệm tìm nghiệm còn lại và chỉ rahệ số của phương trình :Vídụ: a) Phương trình x 2 − 2 px + 5 = 0 . Có một nghiệm bằng 2, tìm p và nghiệm thứ hai. b) Phương trình x 2 + 5 x + q = 0 có một nghiệm bằng 5, tìm q và nghiệm thứ hai. c) Cho phương trình : x 2 − 7 x + q = 0 , biết hiệu 2 nghiệm bằng 11. Tìm q và hai nghiệm củaphương trình. d) Tìm q và hai nghiệm của phương trình : x 2 − qx + 50 = 0 , biết phương trình có 2 nghiệm và cómột nghiệm bằng 2 lần nghiệm kia.Bài giải:a) Thay x1 = 2 v à phương trình ban đ ầu ta đ ư ợc : 1 4−4p+5 = 0 ⇒ p = 4 5 5 T ừ x1 x2 = 5 suy ra x2 = = x1 2b) Thay x1 = 5 v à phương trình ban đ ầu ta đ ư ợc 25 + 25 + q = 0 ⇒ q = −50 −50 −50 T ừ x1 x2 = −50 suy ra x2 = = = −10 ...