Danh mục

Xây dựng mô hình mạng Nơron tế bào CNN giải phương trình khuếch tán phức tuyến tính ứng dụng trong ảnh xử lý ảnh

Số trang: 6      Loại file: pdf      Dung lượng: 451.21 KB      Lượt xem: 11      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Nội dung bài viết là xử lý ảnh dùng PDE cho phép thực hiện các nhiệm vụ chính là làm trơn (smoothing), tìm biên (edge detection), giảm nhiễu denoising) , phân vùng ảnh, phục hồi cấu trúc ảnh (reconstruction) trong nhiều lĩnh vực đặc biệt là trong xử lý ảnh y tế.
Nội dung trích xuất từ tài liệu:
Xây dựng mô hình mạng Nơron tế bào CNN giải phương trình khuếch tán phức tuyến tính ứng dụng trong ảnh xử lý ảnh Tạp chí Khoa học & Công nghệ - Số 1(49)/năm 2009 Kĩ thuật – Công nghệ XÂY DỰNG MÔ HÌNH MẠNG NƠRON TẾ BÀO CNN GIẢI PHƢƠNG TRÌNH KHUẾCH TÁN PHỨC TUYẾN TÍNH ỨNG DỤNG TRONG XỬ LÝ ẢNH Phạm Đức Long - Cáp Thanh Tùng (Khoa Công nghệ thông tin - ĐH Thái Nguyên, Phạm Thượng Cát (Viện Công nghệ thông tin - Viện KH&CN Việt Nam) 1. Xử lý ảnh dùng PDE Những ý tưởng về ứng dụng PDE trong xử lý ảnh đã được nhắc đến từ khoảng đầu những năm 80 của thế kỷ 20. Trong khoảng 10 năm gần đây việc nghiên cứu về xử lý ảnh PDE được các nhà nghiên cứu quan tâm do có nhiều ưu điểm trong khi thực hiện. Xử lý ảnh dùng PDE cho phép thực hiện các nhiệm vụ chính là làm trơn (smoothing), tìm biên (edge detection), giảm nhiễu denoising) , phân vùng ảnh, phục hồi cấu trúc ảnh (reconstruction) trong nhiều lĩnh vực đặc biệt là trong xử lý ảnh y tế [5],[7], [8], [9], [10], [11], việc thực hiện được tiến hành trên cả phần mềm và phần cứng [6]. Với một PDE biểu diễn quan hệ giữa độ sáng của ảnh I với các biến chẳng hạn vị trí, thời gian là I(x,y,t) thì nghiệm của nó khi giải với điều kiện khởi tạo I(x0,y0,t0) và điều kiện biên cụ thể chính là hình ảnh mới của I ở thời điểm t. Một ví dụ quen thuộc nhất là phương trình truyền nhiệt tuyến tính đẳng hướng, phương trình này có thể được ứng dụng để thực hiện làm giảm nhiễu và tìm biên. Chúng ta khảo sát phương trình truyền nhiệt như sau: I ( x, y, t ) t c I ( x, y, t ) trong đó I 2 I 2 x 2 y2 I (1) với c là hệ số dẫn. Trường hợp khi phương trình mô tả quá trình truyền nhiệt đẳng hướng c là một hằng số. 2. Mạng nơ ron tế bào CNN Trong khi giải các PDE theo phương pháp sai phân, việc chia các điểm của đường cong PDE càng dày thì độ chính xác khi giải càng cao nhưng dẫn tới khối lượng tính toán càng lớn, thời gian giải càng lâu, không đáp ứng thời gian giải nhất là khi số lượng biến số lớn. Mạng nơ ron tế bào CNN (Cellular Neural Network) được L.O. Chua và L.Yang phát minh ra năm 1988 [1, 2] đã cho phép giải các PDE trong khoảng thời gian vài phần triệu giây. Hình 1. cho xem một CNN một lớp đơn 2 chiều kích thước 3x3. Sơ đồ mạch điện của mỗi một cell C(i,j) như trong hình 2. Hình 1. CNN với hệ thống 3x3 láng giềng Hình 2. Mạch điện một cell CNN Trong sơ đồ vxij, vyij, vuij là ký hiệu các điện áp trạng thái, đầu ra và đầu vào của cell. Điện áp trạng thái vxij được giả định với điều kiện khởi tạo có độ lớn nhỏ hơn hoặc bằng 1. Điện áp đầu vào vuij được giả định là hằng số với độ lớn nhỏ hơn hoặc bằng 1. Mỗi một cell C(i,j) chứa một nguồn điện áp độc lập Eij , một nguồn dòng độc lập I, một tụ tuyến tính C x, hai điện trở tuyến tính Rx và Ry. Ixy(i,j;k,l) và Ixu(i,j;k,l) là các nguồn dòng được điều khiển bằng điện áp 1 Tạp chí Khoa học & Công nghệ - Số 1(49)/năm 2009 Kĩ thuật – Công nghệ tuyến tính có các đặc điểm Ixy(i,j;k,l) = Aij,klvykl và Ixu(i,j;k,l) = Bij,klvukl với mọi C(k,l) là bán kính ảnh hưởng của các cell láng giềng C(k,l) đến C(i,j) với: Nr(i,j) = {C(k,l)|max{|k-i|,|l-j|} r, 1 k M, 1 l N}. (2) Nr(i,j). r Phần tử phi tuyến trong mỗi một cell là một nguồn dòng được điều khiển bằng điện áp piecewise-linear Iyx = (1/Ry)f(vxij). Hệ số ghép cặp (coupling) Aij,kl và Bij,kl được gọi là các hệ số mẫu hồi tiếp và hệ số mẫu điều khiển. Tất cả các cell trong CNN được giả định rằng có các thông số bằng nhau theo các chiều (không gian bất biến và đẳng hướng). Thuật ngữ mẫu vô tính được sử dụng để nhấn mạnh thuộc tính bất biến này. Điều này có nghĩa là tập hợp 2(2r + 1)2 + 1 con số thực Aij,kl và Bij,kl sẽ quyết định đầy đủ hành vi của một mảng CNN hai chiều bất kì. Các mẫu có thể được biểu diễn cô đọng trong dạng bảng hoặc ma trận. Hệ thống các phương trình mô tả động lực học của một cell CNN hai chiều tuyến tính như sau: Phương trình trạng thái Cx dvxij (t ) dt 1 v xij (t ) Rx A(i, j; k , l )v ykl (t ) B(i, j; k , l )vukl C ( k ,l ) Nr ( i , j ) Phương trình đầu ra: I 1 i M ;1 j N (3a) C ( k ,l ) Nr ( i , j ) vyij(t) = 1 ( v xij (t ) 1 2 v xij (t ) 1 ) 1 i M ;1 j N (3b) 3. Mô hình CNN 1 lớp khuếch tán ứng dụng xử lý ảnh 3.1. Mô hình CNN khuếch tán tuyến tính: Trước khi đưa ra mô hình CNN do chúng tôi đề xuất, chúng tôi xin giới thiệu mô hình CNN khuếch tán đẳng hướng một lớp thực hiện giải phương trình truyền nhiệt 2D (trong xử lý ảnh chỉ cần tới PDE 2D) với hệ số khuếch tán không đổi theo các hướng [3]. Thực hiện rời rạc và xấp xỉ hóa (1) và (2): 2 I x 2 + 2 I y 2 1 I i, j h2 1 4I i, j I i, j 1 Ii 1, j Ii (4) 1, j với h là bước lưới không gian theo 2 hướng x, y ( x = y = h). So sánh với phương trình trạng thái của CNN [1] chúng ta có bộ mẫu (template) cho CNN một lớp đơn giải phương trình (1) như sau: 1 h2 0 A 1 h2 0 4 h2 0 1 R 1 h2 (5) 1 , B 0, z 0 h2 0 Mô hình CNN này có thể thực hiện trên phần cứng. 3.2. Mô hình CNN khuếch tán phức tuyến tính Guy Gilboa [4] đã đưa giá trị phức vào quá trình khuếch tán. Một phương trình khuếch tán phức tuyến tính có thể được mô tả: I t cI xx , t 0 , x R I ( x,0) I 0 R , c, I C (6) j với I là tín hiệu và c = re . Quá trình khuếch tán tuyến tính phức này được điều khiển bằng hệ số khuếch tán phức c. Hãy xét phương trình khuếch tán sau: I t c I (7) Với các giá trị c và I phức: c cR jcI và I ( x, y ) I R ( x, y) jI I ( x, y) 2 Tạp chí Khoa học & Công nghệ - Số 1(49)/năm 2009 j2 1; 2 là toán tử Laplace x 2 2 y c= rcos + jsin ; cR = rcos Thay vào (7) được: I r cos t r cos I R j sin sin II I t Mặt khác: IR jI I j r sin IR t j Kĩ thuật – Công nghệ . Với c=rej chúng ta có: ; cI = rsin r cos IR 2 IR r cos jr sin (8) IR jr cos II j 2 sin II (9) II II (10). Từ (9) và (10) cuối cùng chúng ta có: t 2 IR t r cos IR r sin II r cos II t r sin IR r cos II r sin IR x2 2 IR x2 2 2 IR y2 r sin IR y2 r cos 2 II x2 2 2 2 II x2 II . y2 II . y2 (11) (12) Sự phân rã này sẽ có ích cho chúng ...

Tài liệu được xem nhiều:

Tài liệu liên quan: