Danh mục

Bài giảng Đại số tuyến tính: Không gian vec-tơ với tích vô hướng - Lê Xuân Thanh

Số trang: 35      Loại file: pdf      Dung lượng: 177.46 KB      Lượt xem: 24      Lượt tải: 0    
Jamona

Phí tải xuống: 10,000 VND Tải xuống file đầy đủ (35 trang) 0
Xem trước 4 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng "Đại số tuyến tính: Không gian vec-tơ với tích vô hướng" cung cấp cho người học các kiến thức: Tích vô hướng Euclid trên mặt phẳng R2, khái niệm tích vô hướng tổng quát, phép chiếu vuông góc trên mặt phẳng,... Mời các bạn cùng tham khảo nội dung chi tiết.
Nội dung trích xuất từ tài liệu:
Bài giảng Đại số tuyến tính: Không gian vec-tơ với tích vô hướng - Lê Xuân ThanhKhông gian vec-tơ với tích vô hướng Lê Xuân ThanhNội dung1 Tích vô hướng Euclid trên Rn Một số khái niệm Các tính chất2 Không gian vec-tơ với tích vô hướng Khái niệm Phép chiếu trực giao Cơ sở trực giao, cơ sở trực chuẩn Phép trực giao hóa và trực chuẩn hóa Gram-Schmidt Tích vô hướng Euclid trên Rn Một số khái niệmNội dung1 Tích vô hướng Euclid trên Rn Một số khái niệm Các tính chất2 Không gian vec-tơ với tích vô hướng Khái niệm Phép chiếu trực giao Cơ sở trực giao, cơ sở trực chuẩn Phép trực giao hóa và trực chuẩn hóa Gram-Schmidt Tích vô hướng Euclid trên Rn Một số khái niệmTích vô hướng Euclid trên mặt phẳng R2Cho u = (u1 , u2 ) và v = (v1 , v2 ) trên R2 . Tích vô hướng (hay tích trong) của u với v được định nghĩa bởi u · v := u1 v1 + u2 v2 . Độ dài của vec-tơ u được xác định bởi √ √ ∥u∥ := u21 + u22 (= u · u). Góc θ ∈ [0, π] giữa vec-tơ u và vec-tơ v được xác định bởi ( ) u1 v1 + u2 v2 u·v cos θ := √ 2 √ = . u1 + u22 v21 + v22 ∥u∥∥v∥ Vec-tơ u được gọi là vuông góc với vec-tơ v nếu u · v = 0. Khoảng cách giữa vec-tơ u và vec-tơ v được xác định bởi √ d(u, v) := (u1 − v1 )2 + (u2 − v2 )2 (= ∥u − v∥). Tích vô hướng Euclid trên Rn Một số khái niệmTích vô hướng Euclid trên R nCho u, v ∈ Rn , với u = (u1 , . . . , un ) và v = (v1 , . . . , vn ). Tích vô hướng (hay tích trong) của u với v được định nghĩa bởi ∑ n u · v := ui vi = u1 v1 + . . . + un vn . i=1 Độ dài của vec-tơ u được xác định bởi ( √ ) √ ∥u∥ := u · u 2 2 = u1 + . . . + un . Góc θ ∈ [0, π] giữa vec-tơ u và vec-tơ v được xác định bởi ( ) u·v u1 v1 + . . . + un vn cos θ := =√ 2 √ . ∥u∥∥v∥ u1 + . . . + u2n v21 + . . . + v2n Vec-tơ u được gọi là vuông góc với vec-tơ v nếu u · v = 0. Khoảng cách giữa vec-tơ u và vec-tơ v được xác định bởi ( √ ) d(u, v) := ∥u − v∥ = (u1 − v1 )2 + . . . + (un − vn )2 . Tích vô hướng Euclid trên Rn Các tính chấtNội dung1 Tích vô hướng Euclid trên Rn Một số khái niệm Các tính chất2 Không gian vec-tơ với tích vô hướng Khái niệm Phép chiếu trực giao Cơ sở trực giao, cơ sở trực chuẩn Phép trực giao hóa và trực chuẩn hóa Gram-Schmidt Tích vô hướng Euclid trên Rn Các tính chấtTính chất của tích vô hướng Euclid trên RnCho c ∈ R và u, v, w ∈ Rn . Ta luôn có: u · v = v · u. u · (v + w) = u · v + u · w. c(u · v) = (cu) · v = u · (cv). u · u = ∥u∥2 . u · u ≥ 0, và u · u = 0 ⇔ u = 0. ∥cu∥ = |c|∥u∥.Chứng minh: Coi như bài tập. Tích vô hướng Euclid trên Rn Các tính chấtBất đẳng thức Cauchy-Schwarz Với u, v ∈ Rn ta luôn có |u · v| ≤ ∥u∥∥v∥.Chứng minh:Trường hợp u = 0 ta có |0 · v| = 0 = 0∥v∥ = ∥u∥∥v∥.Xét trường hợp u ̸= 0. Với mọi t ∈ R ta có: 0 ≤ (tu + v) · (tu + v) = (u · u)t2 + 2(u · v)t + v · v.Đặt a = u · u, b = 2(u · v), c = v · v. Do u ̸= 0, nên a > 0.Chú ý rằng, với a > 0, tam thức bậc hai at2 + bt + c ≥ 0 ∀ t ∈ R khi vàchỉ khi b2 − 4ac ≤ 0 ⇔ b2 ≤ 4ac ⇔ 4(u · v)2 ≤ 4(u · u)(v · v) ⇔ |u · v| ≤ ∥u∥∥v∥. Tích vô hướng Euclid trên Rn Các tính chấtBất đẳng thức tam giác Với u, v ∈ Rn ta luôn có ∥u + v∥ ≤ ∥u∥ + ∥v∥.Chứng minh:Ta có ∥u + v∥2 = (u + v) · (u + v) = u · u + 2(u · v) + v · v = ∥u∥2 + 2(u · v) + ∥v∥2 ≤ ∥u∥2 + 2|u · v| + ∥v∥2 ≤ ∥u∥2 + 2∥u∥∥v∥ + ∥v∥2 (bất đẳng thức Cauchy-Schwarz) 2 = (∥u∥ + ∥v∥) . Tích vô hướng Euclid trên Rn Các tính chấtĐịnh lý Pythagor ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: