Danh mục

Bài giảng Điều khiển số - Chương 4: Đặc tính thời gian của hệ thống điều khiển số

Số trang: 0      Loại file: pdf      Dung lượng: 353.64 KB      Lượt xem: 14      Lượt tải: 0    
Thư viện của tui

Phí tải xuống: miễn phí Tải xuống file đầy đủ (0 trang) 0
Xem trước 0 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng "Điều khiển số - Chương 4: Đặc tính thời gian của hệ thống điều khiển số" cung cấp cho người học các kiến thức: Khái niệm chung, xác định đặc tính thời gian của một khâu bằng phương pháp đệ quy, mô phỏng hệ thống điều khiển số,... Mời các bạn cùng tham khảo nội dung chi tiết.
Nội dung trích xuất từ tài liệu:
Bài giảng Điều khiển số - Chương 4: Đặc tính thời gian của hệ thống điều khiển số C.4: ĐẶC TÍNH THỜI GIAN CỦA HỆ THỐNG ĐIỀU KHIỂN SỐ CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.1 KHÁI NIỆM CHUNG X(z) Y(z) G(z) x(kT) y(kT) Cho x(kT) và G(z). Xác định y(kT) x(kT ) ⇒ X ( z ) = Z { x(kT )} Y ( z) G( z) = ⇒ Y ( z ) = X ( z ).G ( z ) X ( z) ⇒ y (kT ) = Z −1 {Y ( z )} CuuDuongThanCong.com https://fb.com/tailieudientucntt Ví dụ 1 − e − aT • Cho: x(kT ) = 1(kT ) G( z) = z − e − aT z x(kT ) = 1(kT ) ⇒ X ( z ) = Z {1(kT )} = z −1 z 1 − e − aT Y ( z ) = X ( z ).G ( z ) = ⋅ z − 1 z − e − aT ⎧ z 1 − e − aT ⎫ • Tra bảng: y (kT ) = Z {Y ( z )} = Z ⎨ −1 −1 ⋅ − aT ⎬ ⎩ z −1 z − e ⎭ y (kT ) = 1 − e − akT CuuDuongThanCong.com https://fb.com/tailieudientucntt 1 x(kT) 0.8 0.6 y(kT) 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 time [s] CuuDuongThanCong.com https://fb.com/tailieudientucntt 4.2. XÁC ĐỊNH ĐẶC TÍNH THỜI GIAN CỦA MỘT KHÂU BẰNG PHƯƠNG PHÁP ĐỆ QUY Y ( z) 2z −1 Cho hàm truyền đạt của khâu: G( z) = = 2 X ( z) 2z − z − 1 và tín hiệu đầu vào x(kT) với k=0, 1, 2, …, ∞. Xây dựng biểu thức xác định y(kT) 1. Nhân chéo: 2 z 2Y ( z ) − zY ( z ) − Y ( z ) = 2 zX ( z ) − X ( z ) 2. Nhân hai vế cho z-n với n là bậc cao nhất của z: 2Y ( z ) − z −1Y ( z ) − z −2Y ( z ) = 2 z −1 X ( z ) − z −2 X ( z ) 3. Lấy Z-1 cả hai vế. Áp dụng tính chất Z của hàm trễ: CuuDuongThanCong.com https://fb.com/tailieudientucntt f (kT ) ⇒ Z { f (kT )} = F ( z ) ⇒ Z −1{ F ( z )} = f (kT ) ⇒ Z { f [ (k − 1)T ]} = z F ( z ) ⇒ Z −1 −1 {z −1 F ( z )} = f [ (k − 1)T ] CuuDuongThanCong.com https://fb.com/tailieudientucntt 3. Lấy Z-1 cả hai vế. Áp dụng tính chất Z của hàm trễ: Z −1 {2Y ( z ) − z −1Y ( z ) − z −2Y ( z )} = Z −1 {2 z −1 X ( z ) − z −2 X ( z )} 2 y (kT ) − y[(k − 1)T ] − y[(k − 2)T ] = 2 x[(k − 1)T ] − x[(k − 2)T ] 4. Xác định y(kT). Đơn giản cách viết: y (kT ) = 0.5 y[(k − 1)T ] + 0.5 y[(k − 2)T ] + x[(k − 1)T ] − 0.5 x[(k − 2)T ] y (k ) = 0.5 y (k − 1) + 0.5 y (k − 2) + x(k − 1) − 0.5 x( k − 2); k = 0,1, 2,..., ∞ Biểu thức đệ quy đặc tính thời gian đầu ra của khâu đã cho y (0) = 0.5 y (−1) + 0.5 y (−2) + 2 x(−1) − 0.5 x(−2) 5. Xác định các giá trị ban đầu: y(-1) = 0; y(-2) = 0; x(-1) = 0; x(-2) = 0 CuuDuongThanCong.com https://fb.com/tailieudientucntt Các bước tính y (k ) = 0.5 y (k − 1) + 0.5 y (k − 2) + x(k − 1) − 0.5 x(k − 2); k = 0,1, 2,..., ∞ k = 0 … y(0) = 0.5y(-1) + 0.5y(-2) + x(-1) – 0.5x(-2) = 0 k = 1 … y(1) = 0.5y(0) + 0.5y(-1) + x(0) – 0.5x(-1) = x(0) k = 2 … y(2) = 0.5y(1) + 0.5y(0) + x(1) – 0.5x(0) = 0.5x(0) + x(1) – 0.5x(0) = x(1) k = 3 … y(3) = 0.5y(2) + 0.5y(1) + x(2) – 0.5x(1) = 0.5x(1) + 0.5x(0) + x(2) – 0.5x(1) = x(2) + 0.5 x(0) . . . . CuuDuongThanCong.com https://fb.com/tailieudientucntt Lưu đồ thuật toán START 1 Nhập x(k), Kmax k=k+1 y(1) = 0; y(2) = 0 y(-2) = 0; y(-1) = 0 x(1) = 0; x(2) = 0 x(-2) = 0; x(-1) = 0 (-) k > Kmax k > Kmax + 3 (+) k=3 k=0 STOP y(k) = 0.5y(k-1) + 0.5y(k-2) + x(k-1) – 0.5x(k-2) 1 CuuDuongThanCong.com https://fb.com/tailieudientucntt Ví dụ 1: Y ( z) a2 Cho hàm truyền đạt của khâu: H 0GP ( z ) = = ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: