Danh mục

Bài giảng Giải tích cao cấp: Chương 2 - Lê Thái Duy

Số trang: 77      Loại file: pdf      Dung lượng: 849.06 KB      Lượt xem: 31      Lượt tải: 0    
tailieu_vip

Phí tải xuống: 16,000 VND Tải xuống file đầy đủ (77 trang) 0
Xem trước 8 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng Giải tích cao cấp: Chương 2 Phép tính vi phân hàm một biến, cung cấp cho người đọc những kiến thức như: đạo hàm - vi phân hàm một biến; quy tắc L’hospital; ứng dụng điển hình trong kinh tế. Mời các bạn cùng tham khảo!
Nội dung trích xuất từ tài liệu:
Bài giảng Giải tích cao cấp: Chương 2 - Lê Thái Duy GIẢI TÍCH CAO CẤP ( Mathematics B1 ) Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy Email : ltduyaguns@vnn.vn Tel : 0918614420 AN GIANG University Ngày 22 tháng 7 năm 2013 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) GIẢI TÍCH CAO CẤP ( Mathematics B1 ) Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy Email : ltduyaguns@vnn.vn Tel : 0918614420 AN GIANG University Ngày 22 tháng 7 năm 2013 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) BASIC MATHEMATICS Chương II. PHÉP TÍNH VI PHÂN HÀM 1 BIẾN 1.ĐẠO HÀM - VI PHÂN HÀM 1 BIẾN 2.QUY TẮC L’HOSPITAL 3.ỨNG DỤNG ĐIỂN HÌNH TRONG KINH TẾ LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1. ĐẠO HÀM - VI PHÂN HÀM 1 BIẾN LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1. ĐẠO HÀM - VI PHÂN HÀM 1 BIẾN Cho hàm f xác định trong khoảng I, x0 ∈ I . LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1. ĐẠO HÀM - VI PHÂN HÀM 1 BIẾN f (x)−f (x0 ) Cho hàm f xác định trong khoảng I, x0 ∈ I . Giả sử lim x−x0 x→x0 tồn tại hữu hạn. LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 ) 1. ĐẠO HÀM - VI PHÂN HÀM 1 BIẾN f (x)−f (x0 ) Cho hàm f xác định trong khoảng I, x0 ∈ I . Giả sử lim x−x0 x→x0 tồn tại hữu hạn. (def ) f (x)−f (x0 ) f 0 (x0 ) = lim x−x0 : đạo hàm của hàm f tại x0 . x→x0 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP ...

Tài liệu được xem nhiều: