Danh mục

Bài giảng Thống kê y học - Bài 2: Một số khái niệm căn bản về xác suất

Số trang: 11      Loại file: doc      Dung lượng: 168.00 KB      Lượt xem: 18      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng Thống kê y học - Bài 2: Một số khái niệm căn bản về xác suất cung cấp các kiến thức giúp người học có thể trình bày 2 định nghĩa về xác suất và đưa ra các ví dụ, xây dựng được tập giao và hợp của 2 tập hợp xác định,... Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Bài giảng Thống kê y học - Bài 2: Một số khái niệm căn bản về xác suất MỘT SỐ KHÁI NIỆM CĂN BẢN VỀ XÁC SUẤT Mục tiêu Sau khi nghiên cứu chủ đề, học viên có khả năng: ­ Trình bày 2 định nghĩa về xác suất và đưa ra các ví dụ ­ Xây dựng được tập giao và hợp của 2 tập hợp xác định ­ Trình bày và phân biệt được hai công thức chuyển vị và tổ hợp ­ Trình bày định nghĩa của xác suất có điều kiện ­ Trình bày công thức cộng xác suất và công thức nhân xác suất 1. Ðịnh nghĩa về xác suất 1.1 Ðịnh nghĩa xác suất theo tần suất tương đối Theo ngôn ngữ  thông thường, xác suất chính là tần suất tương đối. Thí dụ  mệnh đề  khẳng định xác suất sinh con trai là 0,515 có nghĩa là khi thống kê  nhiều lần sinh, tần   suất tương đối sinh con trai sẽ xấp xỉ bằng 0,515 (tần suất tương đối là tần suất xảy  ra biến cố quan tâm chia cho tổng số lần thử). Nói cách khác, nếu một quá trình được  lập lại n nhiều lần, và nếu có f lần xảy ra biến cố E, tần suất tương đối của biến cố  E sẽ xấp xỉ bằng xác suất của E. f P( E ) n (1) Thí dụ: Buffon thực hiện 4040 lần tung đồng tiền và quan sát được 2048 lần xuất hiện   mặt sấp. Tần suất tương đối xảy ra mặt sấp là . Xác suất xảy ra mặt sấp cũng xấp xỉ  bằng 0,507. 1.1 Phép thử, kết cục, biến cố, biến cố đối lập Khi chúng ta gieo một đồng tiền lên một mặt phẳng có thể  xảy ra một trong hai kết   cục: xuất hiện mặt sấp hoặc xuất hiện mặt ngửa với kết quả  không thể  tiên đoán  được. Người ta gọi việc gieo đồng tiền là phép thử (experiment) và sự xuất hiện mặt   xấp hay mặt ngửa của đồng tiền là các kết cục (outcome). Tương tự, khi chúng ta tung con xúc xắc, có thể xuất hiện các mặt 1, 2, 3, 4, 5, 6 thì   việc tung con xúc xắc được gọi là phép thử ngẫu nghiên và việc xuất hiện mặt 1, xuất  hiện mặt 2, 3, 4, 5 và  6 được gọi các kết cục ngẫu nhiên. Nếu chúng ta quan tâm đến  biến cố ra mặt xúc xắc chẵn thì biến cố  (event) này bao gồm 3 kết cục: ra mặt 2, ra   mặt 4 và ra mặt 6. Nói khác đi biến cố là tập hợp mà các phần tử là các kết cục. Bởi  vì tập hợp có thể có bao gồm toàn bộ các phần tử, 0 phần tử hay 1 phần tử nên việc ra  một mặt xúc xắc nào đó (thí dụ ra mặt 2) vừa có thể xem là kết cuộc vừa có thể  xem  là biến cố: biến cố đó đôi khi được gọi là biến cố sơ cấp. Nếu chúng ta tung 3 con xúc xắc phân biệt , có kết cục sau có thể  xảy ra {1,1,1} (ba  con xúc xắc ra mặt 1); {1,1,2}; {1,1,3};....; {6,6,5}; {6,6,6}. Biến cố có tổng số điểm   của 3 con xúc xắc =18 bao gồm một kết cục {6,6,6}. Tương tự chúng ta có thể  định  nghĩa biến cố  tổng số  điểm của ba con xúc xắc =12. Đối với mỗi biến cố A có một biến cố đối lập (complementary event )  Ac (được đọc là  không A) bao gồm các kết cục không có tính chất A. Trở về thí dụ của phép thử tung  con súc sắc 6 mặt, biến cố đối lập với biến cố ra mặt chẵn là biến cố ra mặt lẻ. Biến   cố đối lập cho biến cố ra mặt >=2 là biến cố ra mặt 1.  1.2 Kết cục đồng khả năng Khi chúng ta gieo con xúc xắc đồng nhất, cảm nhận thông thường cho phép chúng ta   giả định việc xuất hiện kết cục ra mặt 1, ra mặt 2, ra mặt 3, ra mặt 4, ra mặt 5, ra mặt   6 có xác xuất như nhau. Khi đó ta gọi các kết cục này là kết cục đồng khả năng. 1.4 Ðịnh nghĩa xác suất cổ điển Nếu phép thử ngẫu nhiên có thể xảy ra theo N kết cục loại trừ lẫn nhau và có xác suất  như nhau và gọi m là số các kết cục thuận lợi cho biến cố E, xác suất xảy ra biến cố  E, được kí hiệu là P(E), sẽ bằng m chia cho N m P( E ) N (2) N còn được gọi là số các kết cục có thể và m số các kết cục thuận lợi. Thí dụ: Nếu chúng ta tung con xúc xắc (xí ngầu) có 6 mặt: mặt 1, mặt 2, mặt 3, mặt 4,  mặt 5, mặt 6 thì có thể  xảy ra với 6 kết cục khác nhau. Những kết cục này loại trừ  lẫn nhau (nếu ra mặt 1 thì không ra mặt 2 và ngược lại) và đồng xác suất. Giả  sử  ta   quan tâm đến biến cố con xúc xắc ra mặt chẵn. Biến cố này có thể xảy ra theo 3 cách,   nói khác đi biến cố  này bao gồm 3 kết cục. Khi đó xác suất xảy ra biến cố  ra mặt   chẵn là 3/6=0.5 Thí dụ: Khoa phổi và khoa Thận của bệnh viện Chợ  Rẫy có 50 bệnh nhân trong số  này có 35 bệnh nhân nữ. Có 12 bệnh nhân của khoa Thận trong đó có là 8 người là nữ.  Có bao nhiêu bệnh nhân nữ ở khoa phổi?  Có bao nhiêu trong số những bệnh nhân của   2 khoa này là nữ hay nằm ở khoa Phổi. Trước tiên chúng ta lập một bảng chéo để  phân loại các bệnh nhân theo giới tính và   theo khoa điều trị (Phổi hay Thận) và điền các thông tin đã cho từ đề bài vào bảng này   (các số in đậm của bảng). Từ các thông tin này chúng ta tính các số ở các ô còn lại (các   số in thường) của bảng chéo Bảng 1. Giới tính của bệnh nhân của khoa Phổi và khoa Thận bệnh viện Chợ rẫy Khoa  Khoa  Tổng số Phổi Thận Nam 11 4 15 Nữ 27 8 35 Tổng số 38 12 50 Từ bảng chéo chúng ta biết được số bệnh nữ của khoa phổi là 27 v ...

Tài liệu được xem nhiều: