Bài giảng "Tin học ứng dụng - Chương 3: Các thống kê cơ bản, tương quan và hồi quy" cung cấp cho người học các bước thực hiện, phân tích kết quả trong thống kê mô tả (Desriptive Statistics) và tổ chức đồ (Histogram), tương quan và hồi qui. Mời các bạn cùng tham khảo nội dung chi tiết.
Nội dung trích xuất từ tài liệu:
Bài giảng Tin học ứng dụng: Chương 3 - Trần Trung HiếuBài giảng tin ứng dụngGv: Trần Trung HiếuBộ môn CNPM – Khoa CNTTEmail: tthieu@hua.edu.vnWebsite: http://fita.hua.edu.vn/tthieu Chương III: Các thống kê cơ bản, tương quan & hồi quyI. Thống kê mô tả (Desriptive Statistics) a. Các bước thực hiện b. Phân tích kết quảII. Tổ chức đồ (Histogram) a. Các bước thực hiện b. Phân tích kết quảIII. Tương quan và hồi qui a. Tính hệ số tương quan b. Hồi quy tuyến tính c. Hồi quy phi tuyến Giới thiệu về phân phối chuẩn1. Phân phối chuẩn, còn gọi là phân phối Gauss, là một phân phối xác suất cực kì quan trọng trong nhiều lĩnh vực. Nó là họ phân phối có dạng tổng quát giống nhau, chỉ khác tham số vị trí (giá trị trung bình μ) và tỉ lệ (phương sai σ2).2. Định nghĩa: Biến ngẫu nhiên X có phân phối chuẩn với các tham số m (kỳ vọng), σ2 (phương sai) nếu nó có hàm mật độ:Đồ thị hàm mật độ phân phối chuẩnĐồ thị hàm phân bố trong phân phối chuẩn I. Thống kê mô tả (Descriptive Statistics)1. Ví dụ 1 – trang 232. Liên hệ xác suất thống kê và các thuật ngữ Excel sử dụng trong thống kê mô tả » Thống kê mô tả cho phép tính các số đặc trưng mẫu, các giá trị thống kê mẫu như trung bình, độ lệch chuẩn, sai số chuẩn, trung vị, mode…Số liệu tính toán được bố trí theo cột hoặc theo dòng Mean (trung bình hay kỳ vọng): đặc trưng cho giá trị trung bình của DLNN Standard Deviation (độ lệch chuẩn), Sample Variance (phương sai mẫu): đặc trưng cho độ phân tán các giá trị của DLNN xung quanh giá trị trung bình Standard Error (sai số chuẩn): Sai số của trung bình Median (trung vị): cho giá trị điểm giữa của dãy số, trong xác suất là giá trị Me của đại lượng ngẫu nhiên X sao cho P(XMe) Mode: là giá trị của biến ngẫu nhiên ứng với xác suất cực đại hay giá trị có tần suất xuất hiện trong mẫu lớn nhất I. Thống kê mô tả (Descriptive Statistics)2. Liên hệ xác suất thống kê và các thuật ngữ Excel sử dụng trong thống kê mô tả (tiếp) Kurtosis (độ nhọn): trong xác suất, người ta chứng minh được nếu DLNN X có phân phối chuẩn thì độ nhọn bằng 0. Ở đây, độ nhọn đánh giá đường mật độ phân phối của dãy số liệu có nhọn hơn hay tù hơn đường mật độ chuẩn tắc (dương là nhọn hơn, âm là tù hơn). Nếu trong khoảng [-2,2] thì có thể coi số liệu xấp xỉ chuẩn Skewness (Độ lệch): Trong xác suất gọi là hệ số bất đối xứng đánh giá sự phân phối các giá trị có cân đối đối với giá trị trung bình hay không, nếu các giá trị của X đối xứng qua kỳ vọng thì Skewness=0 biểu hiện ở đường phân phối lệch trái hay lệch phải (âm là lệch trái, dương là lệch phải). Nếu trong khoảng [-2,2] thì có thể coi như số liệu cân đối như trong phân phối chuẩn. Confidence Level (Nửa độ dài khoảng tin cậy): » Ví dụ: Confidence level = 95% » Trong xác suất tương đương bài toán tìm giá trị α sao cho P(m- αKurtosis > 0 đường màu đỏ, Kurtosis Nếu Kurtosis > 0, kurtosis càng lớn đồ thị càng nhọn. Nếu kurtosis Skewness > 0 là lệch phải, II. Tổ chức đồ1. Ví dụ 2 – trang 252. Tần số xuất hiện của số liệu trong các khoảng cách đều nhau cho phép phác họa biểu đồ tần số. Để vẽ biểu đồ cần thực hiện qua 2 bước: bước chuẩn bị và bước vẽ tổ chức đồ Chuẩn bị: » Dể số liệu ở một cột, một hàng hay một bảng chữ nhật » Tìm giá trị lớn nhất (hàm Max), nhỏ nhất (hàm Min) » Tính khoảng biến thiên R=Max-Min » Chọn số khoảng k của miền phân tổ (thực tế chọn k từ 20-30, ví dụ minh họa chọn k từ 6-10), có thể lấy bằng công thức 6*log(n) trong đó n là số giá trị của DLNN X (lấy giá trị nguyên xấp xỉ) » Tìm giá trị bước tăng trong miền phân tổ h = R/k (Sử dụng hàm Round(R/k,số chữ số lẻ) » Tạo cột bin (Edit->Fill->Series, xem trang 25, 20) II. Tổ chức đồ Chuẩn bị: Vẽ tổ chức đồ » Chọn Tool -> Data Analysis-> Histogram để khai báo các mục: • Input range: Miền dữ liệu • Input Bin: Miền phân tổ • Labels: Nhãn ở dòng đầu nếu có • Output range: Miền kết quả • Pareto: Tần số sắp xếp trong tổ chức đồ là giảm dần • Cumulative Percentage: Hiển thị đường tần suất cộng dồn % • Chart output: Hiển thị biểu đồ Phân tích kết quả từ biểu đồ » Trong khoảng nào số liệu xuất hiện nhiều nhất » Hình dạng tổ chức đồ có giống hình dạng đường mật độ trong phân phối chuẩn không (có tính đối xứng, nhô cao ở giữa ...