Danh mục

Bài giảng Toán kinh tế: Phần 2 - Nguyễn Ngọc Lam

Số trang: 32      Loại file: pdf      Dung lượng: 601.54 KB      Lượt xem: 17      Lượt tải: 0    
10.10.2023

Phí tải xuống: 20,000 VND Tải xuống file đầy đủ (32 trang) 0
Xem trước 4 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng Toán kinh tế: Phần 2 Đạo hàm, vi phần nằm trong bài giảng toán kinh tế nhằm trình bày về các nội dung chính như sau: khái niệm về hàm số một biến, định nghĩa ánh xạ, định nghĩa hàm số, định nghĩa phép toán, hàm số hợp.
Nội dung trích xuất từ tài liệu:
Bài giảng Toán kinh tế: Phần 2 - Nguyễn Ngọc Lam PHẦN II. ĐẠO HÀM, VI PHÂN Chương 3. HÀM SỐ - GIỚI HẠN HÀM SỐ Chương 4. ĐẠO HÀM VÀ VI PHÂN chương 5. HÀM NHIỀU BIẾN chương 6. TÍCH PHÂN chương 7. PHƯƠNG TRÌNH VI PHÂN 55 C3. HÀM SỐ - GIỚI HẠN HÀM SỐ 1. MỘT SỐ KHÁI NIỆM VỀ HÀM SỐ MỘT BIẾN Định nghĩa ánh xạ: Cho X, Y là hai tập bất kỳ. Nếu x  X, cho tương ứng duy nhất một y = f(x)  Y theo qui tắc f, thì f gọi là một ánh xạ từ X vào Y. Ký hiệu: f : X  Y x  f (x ) x  y  f (x ) • Đơn ánh: x1, x2  X, x1 ≠ x2 => f(x1) ≠ f(x2) • Toàn ánh: Với mỗi y  Y, x  X: y = f(x) • Song ánh: Nếu f vừa là đơn ánh và toàn ánh • Nếu f: XY là song ánh thì f-1: YX là ánh xạ ngược của f 56 C3. HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa hàm số: Với X,Y  R, ta gọi ánh xạ f:XY là một hàm số một biến. Ký hiệu là y = f(x). x: biến độc lập y: biến phụ thuộc. Tập X: miền xác định Tập f(X) = {f(x): x  X}: miền giá trị của f 57 C3. HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa phép toán: Cho f, g cùng mxđ X: • f = g: f(x) = g(x),  x  X • f  g = f(x)  g(x), xX • fg = f(x)g(x), xX • af = af(x), xX • f/g = f(x)/g(x), xX, g(x)0 58 C3. HÀM SỐ - GIỚI HẠN HÀM SỐ Hàm số hợp: Giả sử y = f(u) đồng thời u = g(x). Khi đó f = f[g(x)] là hàm số hợp của biến độc lập x thông qua biến trung gian u. Ký hiệu fog. Ví dụ: Tìm gof, goh, fog, hog với g = lg2x, f = sinx, h=ex Hàm số ngược: Cho hàm số f có miền xác định X. Nếu f: XY là một song ánh thì f-1: YX được gọi là hàm số ngược của f. • Đồ thị của f, f-1 đối xứng nhau qua đường y = x. 59 C3. HÀM SỐ - GIỚI HẠN HÀM SỐ Hàm số đơn điệu: • f gọi là tăng (giảm) trên (a,b) nếu: x1,x2  (a,b): x1 < x2 => f(x1)  f(x2) (f(x1)  f(x2)) • f gọi là tăng (giảm) nghiêm ngặt trên (a,b) nếu: x1,x2  (a,b): x1 < x2 => f(x1) < f(x2) (f(x1) > f(x2)) • Hàm số tăng hoặc giảm trên (a,b) được gọi đơn điệu. Hàm số bị chặn: • f gọi bị chặn nếu M: |f(x)|  M, x • f gọi bị chặn trên nếu M: f(x)  M, x • f gọi bị chặn dưới nếu m: f(x)  m, x 60 C3. HÀM SỐ - GIỚI HẠN HÀM SỐ Hàm số tuần hoàn: Cho hàm số f có miền xác định X. Hàm số được gọi là tuần hoàn nếu: T ≠ 0: f(x+T) = f(x),  x  X Số T 0 > 0 nhỏ nhất (nếu có) của T được gọi là chu kỳ cơ sở của hàm số f. Ví dụ: • Hàm số y= sinx, y = cos(x) với chu kỳ cơ sở là T 0 = 2. • Hàm số y = tg(x), y = cotgx với chu kỳ cơ sở là T 0 = . 61 C3. HÀM SỐ - GIỚI HẠN HÀM SỐ Hàm số chẵn, lẻ: f có miền xác định X, với x, -x  X. • f được gọi là hàm số chẵn nếu: f(-x) = f(x),  x  X • f được gọi là hàm số lẻ nếu: f(-x) = -f(x),  x  X Ví dụ: f(x) = cosx + x- x2 Hàm số chẵn g ( x )  log( x  x 2  1) Hàm số lẻ Ghi chú: • Hàm số chẵn đối xứng qua Oy • Hàm số lẻ đối xứng qua gốc toạ độ 62 C3. HÀM SỐ - GIỚI HẠN HÀM SỐ 2. PHÂN LOẠI HÀM SỐ 1. Hàm số luỹ thừa: y = x , với   R •   N: mxđ R •  nguyên âm: mxđ x ≠ 0. •  có dạng 1/p, p  Z: mxđ phụ thuộc vào p chẵn, lẻ •  là số vô tỉ: qui ước chỉ xét y = x tại mọi x  0,  > 0 và tại mọi x > 0 nếu  < 0. Đồ thị của y = x luôn qua điểm (1,1) và đi qua góc toạ độ (0,0) nếu  > 0, không đi qua góc toạ độ nếu  < 0. 63 C3. HÀM SỐ - GIỚI HẠN HÀM SỐ 2. Hàm số mũ: y = ax (a > 0, a ≠ 1) • Hàm số mũ xác định với mọi x. • Hàm số mũ tăng khi a > 1. • Hàm số mũ giảm khi a < 1. • Điểm (0,1) luôn nằm trên đồ thị của hàm số mũ. 64 C3. HÀM SỐ - GIỚI HẠN HÀM SỐ 3. Hàm số logarit: y = logax, a > 0, a ≠ 1 • Hàm số logarit chỉ xác định với x > 0. • Hàm số logax tăng khi a > 1 • Hàm số logax giảm khi a < 1 • Điểm (1,0) luôn nằm trên đồ thị • Hàm số y = logax là hàm số ngược của số y = ax 65 C3. HÀM SỐ - GIỚI HẠN HÀM SỐ  Một số tính chất của logax: loga(x1x2) = loga(x1) + loga(x2) x1 loga ( )  loga (x1)  Loga (x 2 ) x2 logaxα = αlogax b  a log a b log c b log a b  log c a 66 C3. HÀM SỐ - GIỚI HẠN HÀM SỐ 4. Hàm số lượng giác: • y = sinx, miền giá trị [-1,1], hàm lẻ, chu kỳ 2 • y = cosx, miền giá trị [-1,1], hàm chẵn, chu kỳ 2 • y = tgx, mxđ  x ≠ (2k+1)/2, hàm lẻ, chu kỳ  • y = cotgx, mxđ  x ≠ k, k  Z, hàm lẻ, chu kỳ  ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: