Thông tin tài liệu:
Nhận dạng tam giác vuôngPhương pháp: Sử dụng các phép biến đổi tương đương hoặc hệ quả để biến đổi "Điều kiện chotrước" đến một đẳng thức mà từ đó ta dể dàng kết luận được tính chất của tam giác
Nội dung trích xuất từ tài liệu:
Bài tập nhận dạng tam giác CHÖÔNG XI: NHAÄN DAÏN G TAM GIAÙCI. TÍNH CAÙ C GOÙ C CUÛ A TAM GIAÙ CBaø i 201: Tính caù c goù c cuû a ΔABC neá u : 3 sin ( B + C ) + sin ( C + A ) + cos ( A + B ) = ( *) 2 Do A+B+C= π 3 Neâ n : ( *) ⇔ sin A + sin B − cos C = 2 A+B A−B ⎛ C ⎞ 3 ⇔ 2 sin cos − ⎜ 2 cos2 − 1 ⎟ = 2 2 ⎝ 2 ⎠ 2 C A−B C 1 ⇔ 2 cos cos − 2 cos2 = 2 2 2 2 C C A−B ⇔ 4 cos2 − 4 cos cos +1 = 0 2 2 2 2 ⎛ C A − B⎞ 2 A − B ⇔ ⎜ 2 cos − cos ⎟ + 1 − cos =0 ⎝ 2 2 ⎠ 2 2 ⎛ C A − B⎞ 2 A − B ⇔ ⎜ 2 cos − cos ⎟ + sin =0 ⎝ 2 2 ⎠ 2 ⎧ C A−B ⎪2 cos 2 = cos 2 ⎪ ⇔ ⎨ ⎪sin A − B = 0 ⎪ ⎩ 2 ⎧ C ⎪2 cos 2 = cos 0 = 1 ⎧C π ⎪ ⎪ = ⇔ ⎨ ⇔ ⎨2 3 ⎪ A−B ⎪A = B =0 ⎩ ⎪ 2 ⎩ ⎧ π ⎪A = B = 6 ⎪ ⇔ ⎨ ⎪C = 2π ⎪ ⎩ 3Baø i 202: Tính caù c goù c cuû a ΔABC bieá t : 5 cos 2A + 3 ( cos 2B + cos 2C ) + = 0 (*) 2 5 Ta coù : ( *) ⇔ 2 cos2 A − 1 + 2 3 ⎡cos ( B + C ) cos ( B − C ) ⎤ + = 0 ⎣ ⎦ 2 ⇔ 4 cos2 A − 4 3 cos A. cos ( B − C ) + 3 = 0 2 ⇔ ⎡2 cos A − 3 cos ( B − C ) ⎤ + 3 − 3 cos2 ( B − C ) = 0 ⎣ ⎦ 2 ⇔ ⎡2 cos A − 3 cos ( B − C ) ⎤ + 3 sin 2 ( B − C ) = 0 ⎣ ⎦ ⎧sin ( B − C ) = 0 ⎧B − C = 0 ⎪ ⎪ ⇔⎨ 3 ⇔⎨ 3 ⎪cos A = cos ( B − C ) ⎪cos A = ⎩ 2 ⎩ 2 ⎧ A = 300 ⎪ ⇔⎨ ⎪B = C = 75 0 ⎩Baø i 203: Chöù n g minh ΔABC coù C = 1200 neá u : A B C sin A + sin B + sin C − 2 sin ⋅ sin = 2 sin (*) 2 2 2 Ta coù A+B A−B C C A B C (*) ⇔ 2 sin cos + 2 sin cos = 2 sin sin + 2 sin 2 2 2 2 2 2 2 C A−B C C A+B A B ⇔ 2 cos cos + 2 sin cos = 2 cos + 2 sin sin 2 2 2 2 2 2 2 C⎛ A−B C⎞ A B ⇔ cos ⎜ cos + sin ⎟ = cos ⋅ cos 2⎝ 2 2⎠ 2 2 C⎡ A−B A + B⎤ A B ⇔ cos ⎢cos 2 + cos 2 ⎥ = cos 2 cos 2 2⎣ ⎦ C A B A B ⇔ 2 cos cos cos = cos cos 2 2 2 2 2 C 1 A B A B π ⇔ cos = (do cos > 0 vaø cos > 0 vì 0 < ; < ) ...