CGA clustering based vector quantization approach for human activity recognition using discrete hidden Markov model
Số trang: 5
Loại file: pdf
Dung lượng: 400.18 KB
Lượt xem: 14
Lượt tải: 0
Xem trước 1 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
In this paper, we propose a new method of vector quantization (VQ) performance optimally distribute VQ codebook components on Hidden Markov Model (HMM) state. This proposed method is carried out through two steps.
Nội dung trích xuất từ tài liệu:
CGA clustering based vector quantization approach for human activity recognition using discrete hidden Markov model
Nội dung trích xuất từ tài liệu:
CGA clustering based vector quantization approach for human activity recognition using discrete hidden Markov model
Tìm kiếm theo từ khóa liên quan:
Hidden Markov Model Vector quantization Conformal geometric algebra Conformal Geometric Algebra Human activity recognitionTài liệu liên quan:
-
7 trang 26 0 0
-
Development of Vietnamese speech synthesis system using deep neural networks
15 trang 20 0 0 -
MLFNN algorithm for speech classification using MMFC feature extraction in a smart wheelchair
7 trang 19 0 0 -
Ebook Introduction to Data Compression (Third edition): Part 2
408 trang 19 0 0 -
HistoneHMM: Differential analysis of histone modifications with broad genomic footprints
15 trang 19 0 0 -
12 trang 7 0 0
-
12 trang 6 0 0
-
17 trang 5 0 0