Danh mục

ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 4

Số trang: 5      Loại file: doc      Dung lượng: 299.50 KB      Lượt xem: 8      Lượt tải: 0    
tailieu_vip

Hỗ trợ phí lưu trữ khi tải xuống: 2,000 VND Tải xuống file đầy đủ (5 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo đề thi - kiểm tra đáp án và đề thi thử tốt nghiệp năm 2013 - trường thpt nguyễn huệ - đắk lắk - đề số 4, tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐÁP ÁN VÀ ĐỀ THI THỬ TỐT NGHIỆP NĂM 2013 - TRƯỜNG THPT NGUYỄN HUỆ - ĐẮK LẮK - ĐỀ SỐ 4 Hiendvtiger.violet.vn KỲ THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông CODE 04 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ ---------------------------------------------------I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 2x - 1Câu I (3,0 điểm): Cho hàm số: y = x- 1 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Viết phương trình tiếp tuyến với đồ thị (C ) biết tiếp tuyến có hệ số góc bằng – 4.Câu II (3,0 điểm): 1) Giải phương trình: log2 x - log 4 (4x 2 ) - 5 = 0 2 p sin x + cos x 2) Tính tích phân: I = ￲ 3 dx 0 cos x 3) Tìm các giá trị của tham số m để hàm số sau đây đạt cực tiểu tại điểm x 0 = 2 y = x 3 - 3mx 2 + (m 2 - 1)x + 2Câu III (1,0 điểm): ᄋ Cho hình chóp S.ABC có đáy là tam giác vuông tại B, BA C = 300 ,SA = AC = a và SA vuông góc với mặt phẳng (ABC).Tính VS.ABC và khoảng cách từ A đến mặt phẳng (SBC).II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây1. Theo chương trình chuẩn r r r r uuur rCâu IVa (2,0 điểm): Trong không gian với hệ toạ độ (O , i , j , k ) , cho OM = 3i + 2k , mặt cầu (S ) có phương trình: (x - 1)2 + (y + 2)2 + (z - 3)2 = 9 1) Xác định toạ độ tâm I và bán kính của mặt cầu (S ) . Chứng minh rằng điểm M nằm trên mặt cầu, từ đó viết phương trình mặt phẳng (a) tiếp xúc với mặt cầu tại M. 2) Viết phương trình đường thẳng d đi qua tâm I của mặt cầu, song song với mặt phẳng (a) , x +1 y- 6 z- 2 đồng thời vuông góc với đường thẳng D : = = . 3 - 1 1Câu Va (1,0 điểm): Giải phương trình sau đây trên tập số phức: - z 2 + 2z - 5 = 02. Theo chương trình nâng caoCâu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD có toạ độ các đỉnh là A(1;1;1) , B(1;2;1) , C(1;1;2) , D(2;2;1) 1) Viết phương trình đường vuông góc chung của AB và CD. 2) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD.Câu Vb (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây y = ln x , trục hoành và x = e ---------- Hết --------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh: ............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: ................................. BÀI GIẢI CHI TIẾT.Câu I: 2x - 1 y= x- 1 ￲ Tập xác định: D = ᄋ \ {1} -1 ￲ Đạo hàm: y ￲ = < 0, x ￲ D (x - 1)2 ￲ Hàm số đã cho NB trên các khoảng xác định và không đạt cực trị. ￲ Giới hạn và tiệm cận: x ￲ - ￲ y = 2 lim ; lim y = 2 � y = 2 là tiệm cận ngang. x ￲ +￲ lim y = - � ; lim y = +�� x = 1 là tiệm cận đứng. x ￲ 1- x ￲ 1+ ￲ Bảng biến thiên x –￲ 1 +￲ y￲ – – 2 +￲ y y –￲ 2 1 ￲ Giao điểm với trục hoành: y = 0 � 2x - 1 = 0 � x = 2 3 Giao điểm với trục tung: cho x = 0 � y = 1 2,5 ￲ Bảng giá trị: x –1 0 1 2 3 2 y 3/2 1 || 3 5/2 1 ￲ Đồ thị hàm số như hình vẽ bên đây: 2x - 1 -1 O 1 2 3 x  (C ) : y = x- 1 ￲ Tiếp tuyến có hệ số góc bằng –4 nên f ￲(x 0 ) = - 4 � � � - 1= 1 x0 �=3 ...

Tài liệu được xem nhiều: