Danh mục

ĐỀ LUYỆN THI CẤP TỐC MÔN TOÁN 2011 - ĐỀ SỐ 3

Số trang: 6      Loại file: pdf      Dung lượng: 741.96 KB      Lượt xem: 14      Lượt tải: 0    
Jamona

Hỗ trợ phí lưu trữ khi tải xuống: miễn phí Tải xuống file đầy đủ (6 trang) 0

Báo xấu

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề luyện thi cấp tốc môn toán 2011 - đề số 3, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐỀ LUYỆN THI CẤP TỐC MÔN TOÁN 2011 - ĐỀ SỐ 3 www.VNMATH.com PT mặt cầu nhận đoạn AB là đường kính có 0,25đ 2 2 2 11   13   1  5  dạng:  x     y     z    6  6  3 6 CâuVIIb 2009  C2009  iC2009  ..  i 2009C2009 0 1 2009 Ta có: (1  i)(1,0) 0 2 4 6 2006 2008 C2009  C2009  C2009  C2009  ....  C2009  C2009  1 3 5 7 2007 2009 (C2009  C2009  C2009  C2009  ...  C2009  C2009 )i 0,25đ 1 0 2 4 6 2006 2008 Thấy: S  ( A  B) , với A  C2009  C2009  C2009  C2009  ....  C2009  C2009 2 0 2 4 6 2006 2008 B  C2009  C2009  C2009  C2009  ...C2009  C2009 0,25đ 2009 2 1004 1004 1004 1004 + Ta có: (1  i )  (1  i )[(1  i ) ]  (1  i).2  2  2 i . Đồng nhất thức ta có A chớnh là phần thực của (1  i ) 2009 n ờn A  21004 . + Ta có: (1  x) 2009  C2009  xC2009  x 2C2009  ...  x 2009C2009 0 1 2 2009 0 2 2008 1 3 2009 Cho x=-1 ta có: C2009  C2009  ...  C2009  C2009  C2009  ...  C2009 0,25đ Cho x=1 ta có: (C2009  C2009  ...  C2009 )  (C2009  C2009  ...  C2009 )  2 2009 . 0 2 2008 1 3 2009 0,25đ Suy ra: B  22008 . + Từ đó ta có: S  21003  2 2007 . ĐỀ 3I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) 2xCâu I (2,0 điểm). Cho hàm số y = . x 1 1. Khảo sát sự biến thiên và vẽ đồ thị ( C ) của hàm số. 2. Tìm các giá trị của m để đường thẳng y = mx – m + 2 cắt đồ thị ( C ) tại hai điểm phân biệt A,B và đoạn AB có độ dài nhỏ nhất.Câu II (2,0 điểm) cos 2 x.  cos x  1  2 1  sin x  .1. Giải phương trình sin x  cos x 7  x2  x x  5  3  2x  x2 ( x  )2. Giải phương trình 3 x3Câu III (1,0 điểm). Tính tích phân dx .  3. x 1  x  3 0Câu IV (1,0 điểm). Cho tứ diện đều ABCD có cạnh bằng 1. Gọi M, N là các điểm lần lượt di động trên cáccạnh AB, AC sao cho  DMN    ABC  . Đặt AM = x, AN = y. Tính thể tích tứ diện DAMN theo x và y. Chứngminh rằng: x  y  3 xy. x3  y 3  16 z 3Câu V (1,0 điểm). Cho x, y, z  0 thoả mãn x+y+z > 0. Tìm giá trị nhỏ nhất của biểu thức P  3  x  y  zII. PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B).A. Theo chương trình Chuẩn:Câu VI.a (2,0 điểm) 16http://tranduythai.violet.vn Biên soạn: Trần Duy Thái www.VNMATH.com1. Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB: x – 2y + 1 = 0,phương trình đường thẳng BD: x – 7y + 14 = 0, đường thẳng AC đi qua M(2; 1). Tìm toạ độ các đỉnh của hìnhchữ nhật.2. Trong không gian toạ độ Oxyz, cho mặt phẳng (P): 2x – y – 5z + 1 = 0 và hai đường thẳng x  1 y 1 z  2 x2 y2 z d1 : , d2:     2 3 1 1 5 2Viết phương tr ...

Tài liệu được xem nhiều: