Thông tin tài liệu:
Tham khảo tài liệu đề ôn thi đại học môn toán - đề số 12, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN - ĐỀ SỐ 12 Đề số 12I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I: (2 điểm) Cho hàm số y = x3 − 3m 2 x + 2m (Cm). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1 . 2) Tìm m để (Cm) và trục hoành có đúng 2 điểm chung phân biệt.Câu II: (2 điểm) (sin 2 x − sin x + 4) cos x − 2 =0 1) Giải phương trình: 2sin x + 3 2) Giải phương trình: 8 x + 1 = 2 3 2 x +1 − 1 π 2 sin xdxCâu III: (1 điểm) Tính tích phân: I= (sin x + cos x)3 0Câu IV: (1 điểm) Cho khối chóp S.ABC có SA ⊥ (ABC), ∆ ABC vuông cân đỉnh C và SC = a . Tính góc ϕ giữa 2 mặt phẳng (SCB) và (ABC) để thể tích khối chóp lớn nhất.Câu V: (1 điểm) Tìm m để phương trình sau đây có đúng 2 nghiệm thực phân biệt: 2 − x − 2 + x − (2 − x)(2 + x) = mII. PHẦN RIÊNG (3 điểm): A. Theo chương trình chuẩn:Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho đi ểm M(3;1). Vi ết ph ương trình đ ường th ẳng d đi qua M cắt các tia Ox, Oy tại A và B sao cho (OA+3OB) nhỏ nhất. 2) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2;3) và B(3;4;1). Tìm to ạ đ ộ điểm M thuộc mặt phẳng (P): x − y + z − 1 = 0 để ∆ MAB là tam giác đều. n 2Câu VII.a: (1 điểm) Tìm hệ số của x trong khai triển Newton của biểu thức � 3 + x5 �, 20 � � � � x 1112 1 1 Cn − Cn + Cn + ... + (−1) n Cn = 0 n biết rằng: n +1 2 3 13 B. Theo chương trình nâng cao:Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho 4 điểm A(1;0), B(–2;4), C(–1;4), D(3;5). Tìm toạ độ điểm M thuộc đường thẳng (∆) : 3x − y − 5 = 0 sao cho hai tam giác MAB, MCD có diện tích bằng nhau. 2) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng (∆1 ) có phương trình { x = 2t ; y = t; z = 4 ; (∆2 ) là giao tuyến của 2 mặt phẳng (α ) : x + y − 3 = 0 và ( β ) : 4 x + 4 y + 3 z − 12 = 0 . Chứng tỏ hai đường thẳng ∆1 , ∆2 chéo nhau và viết phương trình mặt cầu nhận đoạn vuông góc chung của ∆1 , ∆2 làm đường kính. x 2 + (2m + 1) x + m 2 + m + 4Câu VII.b: (1 điểm) Cho hàm số y = . Chứng minh rằng với mọi m, hàm 2( x + m) số luôn có cực trị và khoảng cách giữa hai điểm cực trị không phụ thuộc m. Hướng dẫn Đề số 12 www.VNMATH.com y co�� CT C, yC� = 0 hoac yCT = 0 ⇔ m= 1Câu I: 2) (Cm) và Ox có đúng 2 điểm chung phân biệt � (2cos x − 1)(sin x cos x + 2) = 0 π + k 2π ⇔ x=Câu II: 1) PT ⇔ 2sin x + 3 3 0 2) Đặt 2 = u > 0; 2 −1 = v . x +1 3 x x=0 u=v>0 �3 + 1 = 2v � + 1 = 2v �3 u u � �� � �3 ...