Danh mục

Đề tham khảo toán đại học 2012_Đề số 08

Số trang: 3      Loại file: pdf      Dung lượng: 193.19 KB      Lượt xem: 4      Lượt tải: 0    
10.10.2023

Phí tải xuống: miễn phí Tải xuống file đầy đủ (3 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề tham khảo toán đại học 2012_đề số 08, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề tham khảo toán đại học 2012_Đề số 08BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Môn Thi: TOÁN – Khối A Thời gian: 180 phút, không kể thời gian giao đề ĐỀ THI THAM KHẢOI. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I (2 điểm): Cho hàm số: y  3x  x3 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Tìm trên đường thẳng y = – x các điểm kẻ được đúng 2 tiếp tuyến tới đồ thị (C).Câu II (2 điểm): 3 sin 2 x  2sin x 1) Giải phương trình.: 2 sin 2 x.cos x x 2) Tìm m để phương trình sau có nghiệm: x( x  1)  4( x  1) m  x 1 2 2Câu III (1 điểm): Tính tích phân I=  esin x .sin x.cos3 x. dx.Câu IV (1 điểm): Cho hình nón đỉnh S, 0đường tròn đáy có tâm O và đường kính là AB = 2R. Gọi M là điểm thuộc đường tròn đáy và ASB  2 , ASM  2  . Tính thể tích khối tứ diện SAOM theo R,  và  .Câu V (1 điểm): Cho: a 2  b 2  c 2  1 . Chứng minh: abc  2(1  a  b  c  ab  ac  bc)  0II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩnCâu VI.a (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): (x – 1)2 + (y + 1)2 = 25 và điểm M(7; 3). Lập phương trình đường thẳng (d) đi qua M cắt (C) tại hai điểm A, B phân biệt sao cho MA = 3MB. 2) Trong không gian với hệ toạ độ Oxyz, cho các điểm A(1;0;0); B(0;2;0); C(0;0;–2). Gọi H là hình chiếu vuông góc của O trên mặt phẳng (ABC), tìm tọa độ điểm H.Câu VIIa (1 điểm) Giải phương trình: log 2 x  ( x  7) log 2 x  12  4 x  0 2 B. Theo chương trình nâng caoCâu VI.b (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho hình bình hành ABCD có diện tích bằng 4. Biết A(1;0), B(0;2) và giao điểm I của hai đường chéo nằm trên đường thẳng y = x. Tìm tọa độ các đỉnh C và D. 2) Trong không gian với hệ tọa độ Oxyz, cho  ABC với tọa độ đỉnh C(3; 2; 3) và phương trình đường cao AH, phương trình đường phân giác trong BD lần lượt là: x 2 y 3 z 3 , d2 : x  1  y  4  z  3 .   d1 : 2 2 1 1 1 1 Lập phương trình đường thẳng chứa cạnh BC của  ABC và tính diện tích của  ABC .Câu VII.b (1 điểm) Giải phương trình: 2008 x  2007 x 1 .  Hướng dẫnCâu I: 2) A (2; –2) và B(–2;2)Câu II: 1) PT  2(1  cos x )(sin 2 x  sin x )  0    k 2 x  sin x  0, cos x  0 3 x . PT có nghiệm khi t 2  4t  m  0 có nghiệm, suy ra m  4 . 2) Đặt t  ( x  1) x 1 11 1Câu III: Đặt sin 2 x  t  I   et (1  t )dt = e 20 2Câu IV: Gọi OH là đường cao của D O AM , ta có:  SO  OA.cotg  R.cotg sin    AH  SA.sin   R  OA R sin   SA  sin   sin   R sin 2   sin 2  .  OH  OA2  AH 2  sin  3 Vậy: VS . AOM  1 .SO. AH .OH  R cos 3 sin  sin 2   sin 2  . 3sin  3Câu V: Từ gt  a2  1  1 + a  0. Tương tự, 1 + b  0, 1 + c  0  (1  a )(1  b)(1  c )  0  1  a  b  c  ab  ac  bc  abc  0 . (a) 1 Mặt khác a 2  b 2  c 2  a  b  c  ab  ac  bc  (1  a  b  c) 2  0 . (b) 2 Cộng (a) và (b)  đpcmCâu VI.a: 1) PM /( C )  27  0  M nằm ngoài (C). (C) có tâm I(1;–1) và R = 5. ...

Tài liệu được xem nhiều: