Đề thi cao học Huế 2010
Số trang: 6
Loại file: pdf
Dung lượng: 1.11 MB
Lượt xem: 22
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Đề thi cao học Huế 2010Các đề thi được xây dựng với nội dung đa dạng phong phú với hàm lượng kiến thức hoàn toàn nằm trong chương trình theo qui định của Bộ Giáo dục và Đào tạo.Tài liệu dùng làm tham khảo rất hay.
Nội dung trích xuất từ tài liệu:
Đề thi cao học Huế 2010BỘ GIÁO DỤC VÀ ĐÀO TẠO Họ và tên thí sinh:……………………………… ĐẠI HỌC HUẾ Số báo danh:……………………………… KỲ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2009 (Đợt 2) Môn thi: GIẢI TÍCH (Dành cho cao học) Thời gian làm bài: 180 phútCâu 1. a. Cho dãy số thực . Chứng minh rằng nếu chuỗi hội tụ tại thì nó sẽ hội tụ tại mọi . b. Cho chuỗi hàm Khảo sát sự hội tụ tuyệt đối và đều của chuỗi hàm . Tính tổng của chuỗi hàm .Câu 2. Cho là một không gian mêtric. Trên ta định nghĩa a. Chứng minh rằng là một mêtric trên . b. Chứng minh rằng là một không gian mêtric đầy đủ khi và chỉ khi cũng là một không gian mêtric đầy đủ.Câu 3. Cho là hai không gian định chuẩn trên cùng một trường cơ sở và là một ánh xạ tuyến tính thoả mãn điều kiện: với mỗi dãy hội tụ về thì dãy bị chặn. Chứng minh rằng là ánh xạ tuyến tính liên tục.Câu 4. Xét không gian Hilbert phức gồm tất cả các dãy số phức sao cho với tích vô hướng . Giả sử là một dãy số phức bị chặn. Cho xác định bởi a. Chứng minh rằng là toán tử tuyến tính liên tục. Tính chuẩn của . b. Chứng minh rằng nếu là dãy số thực thì là một toán tử tự liên hiệp.-----------------------------------------------------Ghi chú: Cán bộ coi thi không giải thích gì thêm. ĐÁP ÁN ĐỀ GIẢI TÍCH CAO HỌC ĐỢT 2 NĂM 2009Câu 1. (4đ) a. Ta có Nên chuỗi hội tụ theo tiêu chuẩn Abel tại mọi a. Ta có nên ta chỉ cần xét chuỗi trong . Với bất kỳ ta có . Vậy chuỗi hội tụ tuyệt đối tại mọi và hội tụ đều trên các khoảng . Do khi nên chuỗi không hội tụ đều trên khoảng b. Chú ý Do đó VậyCâu 2. (2đ) a. (1đ) Kiểm tra 2 tiên đề đầu tiên về mêtric (0,5đ) Tiên đề còn lại chứng minh dựa vào hàm đơn điệu tăng trên . (0,5đ) b. (1đ) cơ bản trong cơ bản trong (0,5đ) cơ bản trong cơ bản trong (0,5đ)Câu 3. (2đ) Giả sử không bị chặn trên mặt cầu đơn vị khi đó tồn tại trên dãy mà . Khi đó dãy hội tụ về 0 nhưng Trái giả thiết.Câu 4. (2đ) a. Kiểm tra tính tuyến tính của . (0,5đ) ta có Vì dãy bị chặn nên . Do đó Vậy liên tục và Xét dãy ta có nên . Suy ra b. (1đ) ta cóVì là số tực nên tổng của chuỗi này là một số thực. Vậy toán tử là tự liên hợp.
Nội dung trích xuất từ tài liệu:
Đề thi cao học Huế 2010BỘ GIÁO DỤC VÀ ĐÀO TẠO Họ và tên thí sinh:……………………………… ĐẠI HỌC HUẾ Số báo danh:……………………………… KỲ THI TUYỂN SINH SAU ĐẠI HỌC NĂM 2009 (Đợt 2) Môn thi: GIẢI TÍCH (Dành cho cao học) Thời gian làm bài: 180 phútCâu 1. a. Cho dãy số thực . Chứng minh rằng nếu chuỗi hội tụ tại thì nó sẽ hội tụ tại mọi . b. Cho chuỗi hàm Khảo sát sự hội tụ tuyệt đối và đều của chuỗi hàm . Tính tổng của chuỗi hàm .Câu 2. Cho là một không gian mêtric. Trên ta định nghĩa a. Chứng minh rằng là một mêtric trên . b. Chứng minh rằng là một không gian mêtric đầy đủ khi và chỉ khi cũng là một không gian mêtric đầy đủ.Câu 3. Cho là hai không gian định chuẩn trên cùng một trường cơ sở và là một ánh xạ tuyến tính thoả mãn điều kiện: với mỗi dãy hội tụ về thì dãy bị chặn. Chứng minh rằng là ánh xạ tuyến tính liên tục.Câu 4. Xét không gian Hilbert phức gồm tất cả các dãy số phức sao cho với tích vô hướng . Giả sử là một dãy số phức bị chặn. Cho xác định bởi a. Chứng minh rằng là toán tử tuyến tính liên tục. Tính chuẩn của . b. Chứng minh rằng nếu là dãy số thực thì là một toán tử tự liên hiệp.-----------------------------------------------------Ghi chú: Cán bộ coi thi không giải thích gì thêm. ĐÁP ÁN ĐỀ GIẢI TÍCH CAO HỌC ĐỢT 2 NĂM 2009Câu 1. (4đ) a. Ta có Nên chuỗi hội tụ theo tiêu chuẩn Abel tại mọi a. Ta có nên ta chỉ cần xét chuỗi trong . Với bất kỳ ta có . Vậy chuỗi hội tụ tuyệt đối tại mọi và hội tụ đều trên các khoảng . Do khi nên chuỗi không hội tụ đều trên khoảng b. Chú ý Do đó VậyCâu 2. (2đ) a. (1đ) Kiểm tra 2 tiên đề đầu tiên về mêtric (0,5đ) Tiên đề còn lại chứng minh dựa vào hàm đơn điệu tăng trên . (0,5đ) b. (1đ) cơ bản trong cơ bản trong (0,5đ) cơ bản trong cơ bản trong (0,5đ)Câu 3. (2đ) Giả sử không bị chặn trên mặt cầu đơn vị khi đó tồn tại trên dãy mà . Khi đó dãy hội tụ về 0 nhưng Trái giả thiết.Câu 4. (2đ) a. Kiểm tra tính tuyến tính của . (0,5đ) ta có Vì dãy bị chặn nên . Do đó Vậy liên tục và Xét dãy ta có nên . Suy ra b. (1đ) ta cóVì là số tực nên tổng của chuỗi này là một số thực. Vậy toán tử là tự liên hợp.
Tìm kiếm theo từ khóa liên quan:
đề thi cao học bất đẳng thức bài tập dãy số giáo trình đại số hình học tìm điểm rơi chuẩn hóa trong toán sáng tạo bất đẳng thứcGợi ý tài liệu liên quan:
-
13 trang 264 0 0
-
500 Bài toán bất đẳng thức - Cao Minh Quang
49 trang 56 0 0 -
21 trang 44 0 0
-
Khai thác một tính chất của tam giác vuông
47 trang 43 0 0 -
Tuyển tập 200 bài tập bất đẳng thức có lời giải chi tiết năm 2015
56 trang 41 0 0 -
Bất đẳng thức (BDT) Erdos-Mordell
13 trang 40 0 0 -
Một số bất đẳng thức cơ bản ứng dụng vào bất đẳng thức hình học - 2
29 trang 37 0 0 -
Giáo trình hình thành ứng dụng phân tích xử lý các toán tử trong một biểu thức logic p4
10 trang 37 0 0 -
43 trang 34 0 0
-
8 trang 32 0 0