Danh mục

Đề thi chọn học sinh giỏi giải toán trên máy tính casino- Đề số 3

Số trang: 5      Loại file: doc      Dung lượng: 142.50 KB      Lượt xem: 18      Lượt tải: 0    
Jamona

Phí tải xuống: miễn phí Tải xuống file đầy đủ (5 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Đề bồi dưỡng học sinh giỏi toán trên máy tính casino được biên soạn với mục đích giúp học sinh cũng cố, hệ thống kiến thức. Chúc các bạn thi tốt.
Nội dung trích xuất từ tài liệu:
Đề thi chọn học sinh giỏi giải toán trên máy tính casino- Đề số 3 www.vnmath.com ĐỀ THI CHỌN HỌC SINH GIỎI GIẢI TOÁN TRÊN MÁY TÍNH CASIO ĐỀ SỐ 3Thí sinh làm trực tiếp vào bản đề thi này, n ếu không có yêu c ầu gì thêm hãy làm tròn v ớinăm chữ số thập phân.Câu 1: Cho đa thức f(x) bậc 3 với hệ số của x3 là k, k nguyên dương thỏa mãn: f(2009) = 2010; f(2010) = 2011Chứng minh rằng: f(2011) – f(2008) là số lẻ. Cách giải Kết quả a1 = 0  Câu 2: Tìm a2009 biết a = n(n + 1) (a + 1) ;  n +1 (n + 2)(n + 3) n n∈N *  Cách giải Kết quả www.vnmath.comCâu 3: Tính chính xác ƯCLN và BCNN của hai số a = 24614205, b = 10719433 Cách giải Kết quả Câu 4: Tìm tất cả các số có 6 chữ số thỏa mãn hai tính chất sau: 1) Số tạo thành bởi ba chữ số cuối lớn hơn số tạo thành bởi ba chữ số đầu 1 đơn vị. 2) Là số chính phương. Cách giải Kết quả www.vnmath.com Câu 5: Tính diện tích phần gạch chéo(được giới hạn trong 4 cung tròn như hình vẽ), biếtABCD là hình vuông cạnh 5,35 cm; M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. A N B M P D Q C Cách giải Kết quả www.vnmath.com � �� � 3 ��Câu 6: Cho sin x = 0,3 � < x < 0 � cos y = − 0,3 � < y < ; � � � 2� � 2 �Tính gần đúng giá trị của biểu thức sau tan 5 ( x 2 + 2 y 2 ) + cot 5 ( x 2 − 2 y 2 ) P= sin 7 ( x − y ) + cos 7 ( x + y ) Cách giải Kết quả ĐÁP ÁN VÀ THANG ĐIỂM www.vnmath.com Điểm ĐiểmBài Cách giải Đáp số toán TP bài - Tìm đa thức phụ: đặt g(x) = f(x) + (ax + b). Tìm a, b để g(2009) = g(2010) = 0. Ta được g(x) = f(x) – x – 1. 1 - Tính giá trị của f(x) ta được 5 f(x) = k(x – 2009)(x – 2010)(x – x0) + x + 1 Từ đó tính được f(2011) – f(2008) = 3(2k + 1) là số lẻ với mọi k nguyên dương 2 - Tính vài số hạng đầu bằng quy trình: 2.5 5 1 SHIFT STO A 0 SHIFT STO B ANPHA C ANPHA = ANPHA A ( ANPHA A + 1 ) ( ( ANPHA A + 2 ) ( ANPHA A + 3 ) ) www.vnmath.com ( ANPHA B + 1 ) ANPHA : ANPHA A ANPHA = ANPHA A + 1 ) ANPHA : ANPHA B ANPHA = ANPHA C 1 7 27 11 13 9 Ta được dãy: , , , , , ,... 6 20 50 15 14 8 ( n − 1) ( 2n + 1) Dự đoán số hạng tổng quát an = , 10 ( n + 1) chứng minh bằng quy nạp. 401,5001 2.5 2008.4019 Từ đó ta được a2009 = 20100 Dùng thuật toán Euclide ƯCLN(24614205, 10719433) = 21311 21311 2.53 BCNN(24614205, 10719433) = 5 24614205.10719433 = 12380945115 12380945115 2.5 21311 - Gọi số cần tìm là: n = a1a2 a3 a4 a5a6 - Đặt x = a1a2 a3 . Khi ấy x = a4 a5 a6 = x + 1 và 183184, n = 1000 x + x + 1 = 1001x + 1 = y 2 hay 328329, 54 ( y − 1) ...

Tài liệu được xem nhiều: