ĐỀ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC 2011 MÔN TOÁN – ĐỀ SỐ 7
Số trang: 4
Loại file: pdf
Dung lượng: 193.53 KB
Lượt xem: 12
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu đề thi khảo sát chất lượng ôn thi đại học 2011 môn toán – đề số 7, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐỀ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC 2011 MÔN TOÁN – ĐỀ SỐ 7 ĐỀ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC 2011 MÔN TOÁN – ĐỀ SỐ 7 Thời gian làm bài: 180 phútA. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)Câu I. (2 điểm) Cho hàm số y = x3 + 3x2 + mx + 1 có đồ thị là (Cm); ( m là tham số) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 3. 2. Xác định m để (Cm) cắt đường thẳng y = 1 tại ba điểm phân biệt C(0;1), D, E sao cho các tiếp tuyến của (Cm) tại D và E vuông góc với nhau.Câu II (2 điểm) cos 2 x cos 3 x 1 2 1.Giải phương trình: cos 2 x tan x . cos 2 x x 2 y 2 xy 1 4 y , ( x, y R) . 2. Giải hệ phương trình: 2 2 y ( x y) 2 x 7 y 2Câu III (1 điểm) e log3 x 2 Tính tích phân: I dx . x 1 3ln 2 x 1Câu IV. (1 điểm) a3 vµ gãc BAD = 600. Gäi M vµ N Cho h×nh hép ®øng ABCD.ABCD cã c¸c c¹nh AB = AD = a, AA = 2 lÇn lît lµ trung ®iÓm cña c¸c c¹nh AD vµ AB. Chøng minh AC vu«ng gãc víi mÆt ph¼ng (BDMN). TÝnh thÓ tÝch khèi chãp A.BDMN.Câu V. (1 điểm) 7 Cho a, b, c là các số thực không âm thỏa mãn a b c 1 . Chứng minh rằng: ab bc ca 2abc . 27B. PHẦN RIÊNG (3 điểm). Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc 2)1.Theo chương trình ChuẩnCâu VIa. ( 2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC biết A(5; 2). Phương trình đường trung trực cạnh BC, đường trung tuyến CC’ lần lượt là x + y – 6 = 0 và 2x – y + 3 = 0. Tìm tọa độ các đỉnh của tam giác ABC. 2. Trong không gian với hệ tọa độ Oxyz, hãy xác định toạ độ tâm và bán kính đường tròn ngoại tiếp tam giác ABC, biết A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3).Câu VIIa. (1 điểm) 2 2 z1 z2 2 Cho z1 , z2 là các nghiệm phức của phương trình 2 z 4 z 11 0 . Tính giá trị của biểu thức . ( z1 z2 )22. Theo chương trình Nâng caoCâu VIb. ( 2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng : x 3 y 8 0 , :3x 4 y 10 0 và điểm A(-2 ; 1). Viết phương trình đường tròn có tâm thuộc đường thẳng , đi qua điểm A và tiếp xúc với đường thẳng ’. 2. Trong không gian với hệ tọa độ Oxyz, Cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1). Viết phương trình mặt phẳng (ABC) và tìm điểm M thuộc mặt phẳng 2x + 2y + z – 3 = 0 sao cho MA = MB = MC.Câu VIIb. (1 điểm) 2 2 log1 x ( xy 2 x y 2) log 2 y ( x 2 x 1) 6 , ( x, y R) . Giải hệ phương trình : log1 x ( y 5) log 2 y ( x 4) =1 ----------------------------------------------------------- tavi ------------------------------------------------------ĐÁP ÁN KỲ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC KHỐI A - B – D. Năm 2010Câu Ý Nội dung Điểm I 1 1 2 PT hoành độ giao điểm x3 + 3x2 + mx + 1 = 1 x(x2 + 3x + m) = 0 m = 0, f(x) = 0 0.25 Đê thỏa mãn yc ta phải có pt f(x) = 0 có 2 nghiệm phân biệt x1, x2 khác 0 và 0.25 y’(x1).y’(x2) = -1. 9 4m 0, f (0) m 0 Hay 2 2 (3x1 ...
Nội dung trích xuất từ tài liệu:
ĐỀ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC 2011 MÔN TOÁN – ĐỀ SỐ 7 ĐỀ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC 2011 MÔN TOÁN – ĐỀ SỐ 7 Thời gian làm bài: 180 phútA. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)Câu I. (2 điểm) Cho hàm số y = x3 + 3x2 + mx + 1 có đồ thị là (Cm); ( m là tham số) 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 3. 2. Xác định m để (Cm) cắt đường thẳng y = 1 tại ba điểm phân biệt C(0;1), D, E sao cho các tiếp tuyến của (Cm) tại D và E vuông góc với nhau.Câu II (2 điểm) cos 2 x cos 3 x 1 2 1.Giải phương trình: cos 2 x tan x . cos 2 x x 2 y 2 xy 1 4 y , ( x, y R) . 2. Giải hệ phương trình: 2 2 y ( x y) 2 x 7 y 2Câu III (1 điểm) e log3 x 2 Tính tích phân: I dx . x 1 3ln 2 x 1Câu IV. (1 điểm) a3 vµ gãc BAD = 600. Gäi M vµ N Cho h×nh hép ®øng ABCD.ABCD cã c¸c c¹nh AB = AD = a, AA = 2 lÇn lît lµ trung ®iÓm cña c¸c c¹nh AD vµ AB. Chøng minh AC vu«ng gãc víi mÆt ph¼ng (BDMN). TÝnh thÓ tÝch khèi chãp A.BDMN.Câu V. (1 điểm) 7 Cho a, b, c là các số thực không âm thỏa mãn a b c 1 . Chứng minh rằng: ab bc ca 2abc . 27B. PHẦN RIÊNG (3 điểm). Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc 2)1.Theo chương trình ChuẩnCâu VIa. ( 2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC biết A(5; 2). Phương trình đường trung trực cạnh BC, đường trung tuyến CC’ lần lượt là x + y – 6 = 0 và 2x – y + 3 = 0. Tìm tọa độ các đỉnh của tam giác ABC. 2. Trong không gian với hệ tọa độ Oxyz, hãy xác định toạ độ tâm và bán kính đường tròn ngoại tiếp tam giác ABC, biết A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3).Câu VIIa. (1 điểm) 2 2 z1 z2 2 Cho z1 , z2 là các nghiệm phức của phương trình 2 z 4 z 11 0 . Tính giá trị của biểu thức . ( z1 z2 )22. Theo chương trình Nâng caoCâu VIb. ( 2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng : x 3 y 8 0 , :3x 4 y 10 0 và điểm A(-2 ; 1). Viết phương trình đường tròn có tâm thuộc đường thẳng , đi qua điểm A và tiếp xúc với đường thẳng ’. 2. Trong không gian với hệ tọa độ Oxyz, Cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1). Viết phương trình mặt phẳng (ABC) và tìm điểm M thuộc mặt phẳng 2x + 2y + z – 3 = 0 sao cho MA = MB = MC.Câu VIIb. (1 điểm) 2 2 log1 x ( xy 2 x y 2) log 2 y ( x 2 x 1) 6 , ( x, y R) . Giải hệ phương trình : log1 x ( y 5) log 2 y ( x 4) =1 ----------------------------------------------------------- tavi ------------------------------------------------------ĐÁP ÁN KỲ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC KHỐI A - B – D. Năm 2010Câu Ý Nội dung Điểm I 1 1 2 PT hoành độ giao điểm x3 + 3x2 + mx + 1 = 1 x(x2 + 3x + m) = 0 m = 0, f(x) = 0 0.25 Đê thỏa mãn yc ta phải có pt f(x) = 0 có 2 nghiệm phân biệt x1, x2 khác 0 và 0.25 y’(x1).y’(x2) = -1. 9 4m 0, f (0) m 0 Hay 2 2 (3x1 ...
Tìm kiếm theo từ khóa liên quan:
tuyển sinh năm 2011 đề thi năm 2011 đề thi thử đại học ôn thi toán học đề thi môn toánGợi ý tài liệu liên quan:
-
Đề thi thử đại học môn Vật lý - Khối A, A1, V: Đề số 7
5 trang 96 0 0 -
500 Bài toán bất đẳng thức - Cao Minh Quang
49 trang 48 0 0 -
11 trang 36 0 0
-
Trắc nghiệm sinh học phần kỹ thuật di truyền + đáp án
6 trang 34 0 0 -
Đề thi chọn học sinh giỏi tỉnh Phú Yên
5 trang 33 0 0 -
60 ĐỀ TOÁN ÔN THI TN THPT (có đáp án) Đề số 59
2 trang 29 0 0 -
Đề thi thử trường THCS-THPT Hồng Vân
6 trang 28 0 0 -
1 trang 28 0 0
-
Trường THPT chuyên Huỳnh Mẫn Đạt - ĐỀ THI HỌC KỲ II MÔN TOÁN KHỐI 12 NĂM HỌC 2010-2011
6 trang 27 0 0 -
Chuyên đề ôn thi đại học môn toán - Bài tập Hình học không gian
3 trang 25 0 0