ĐỀ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC 2011 MÔN TOÁN – ĐỀ SỐ 8
Số trang: 6
Loại file: pdf
Dung lượng: 190.89 KB
Lượt xem: 17
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tham khảo tài liệu đề thi khảo sát chất lượng ôn thi đại học 2011 môn toán – đề số 8, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐỀ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC 2011 MÔN TOÁN – ĐỀ SỐ 8 ĐỀ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC 2011 MÔN TOÁN – ĐỀ SỐ 8 Thời gian làm bài: 180 phútI. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm). 2x 4Câu I (2 điểm): Cho hàm số y . 1 x 1) Khảo sát và vẽ đồ thị C của hàm số trên. 2) Gọi (d) là đường thẳng qua A( 1; 1 ) và có hệ số góc k. Tìm k sao cho (d) cắt ( C ) tại hai điểm M, N và MN 3 10 .Câu II (2 điểm):1) Giải phương trình: sin 3x 3sin 2 x cos 2 x 3sin x 3cos x 2 0 . x 2 y 2 xy 1 4 y2) Giải hệ phương trình: . y ( x y )2 2 x 2 7 y 2 2 3sin x 2cos xCâu III (1 điểm): Tính tích phân: I dx (sin x cos x)3 0Câu IV (1 điểm):Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật với SA vuông góc với đáy, G là trọng tâm tam giácSAC, mặt phẳng (ABG) cắt SC tại M, cắt SD tại N. Tính thể tích của khối đa diện MNABCD biết SA=AB=avà góc hợp bởi đường thẳng AN và mp(ABCD) bằng 300 . Câu V (1 điểm): Cho các số dương a, b, c : ab bc ca 3. 1 1 1 1 . Chứng minh rằng: 2 2 2 1 a (b c ) 1 b (c a ) 1 c (a b) abcII. PHẦN RIÊNG (3 điểm) (Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc phần 2)).1. Theo chương trình Chuẩn :Câu VI.a (2 điểm):1) Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn hai đường tròn (C ) : x 2 y 2 – 2 x – 2 y 1 0, (C ) : x 2 y 2 4 x – 5 0 cùng đi qua M(1; 0). Viết phươngtrình đường thẳng qua M cắt hai đường tròn (C ), (C ) lần lượt tại A, B sao cho MA= 2MB.2) Trong không gian với hệ tọa độ Oxyz, hãy xác định toạ độ tâm và bán kính đường tròn ngoại tiếp tamgiác ABC, biết A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3).Câu VII.a (1 điểm): Khai triển đa thức: (1 3x )20 a0 a1 x a2 x 2 ... a20 x 20 . Tính tổng: S a0 2 a1 3 a2 ... 21 a20 .2. Theo chương trình Nâng cao :Câu VI.b (2 điểm)1) Trong mặt phẳng với hệ toạ độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâmH (1;0) , chân đường cao hạ từ đỉnh B là K (0; 2) , trung điểm cạnh AB là M (3;1) . x 1 y z 1 xyz2) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: (d1 ) : và (d 2 ) : . 2 112 1 1Tìm tọa độ các điểm M thuộc (d1 ) và N thuộc (d 2 ) sao cho đường thẳng MN song song với mặt phẳngP : x – y z 2010 0 độ dài đoạn MN bằng 2. 2 log1 x ( xy 2 x y 2) log 2 y ( x 2 2 x 1) 6 Câu VII.b (1 điểm): Giải hệ phương trình log1 x ( y 5) log 2 y ( x 4) =1 ………………………………….....................HẾT……………………………………………………Câu Phần Nội dung Điểm Làm đúng, đủ các bước theo Sơ đồ khảo sát hàm số cho điểm tối đa. I 1,0(2,0) 1(1,0) 2(1,0) Từ giả thiết ta có: (d ) : y k ( x 1) 1. Bài toán trở thành: Tìm k để hệ phương trình sau 0,25 2 2 có hai nghiệm ( x1 ; y1 ), ( x2 ; y2 ) phân biệt sao cho x2 x1 y2 y1 90(*) 2x 4 kx 2 (2k 3) x k 3 0 k ( x 1) 1 ...
Nội dung trích xuất từ tài liệu:
ĐỀ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC 2011 MÔN TOÁN – ĐỀ SỐ 8 ĐỀ THI KHẢO SÁT CHẤT LƯỢNG ÔN THI ĐẠI HỌC 2011 MÔN TOÁN – ĐỀ SỐ 8 Thời gian làm bài: 180 phútI. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm). 2x 4Câu I (2 điểm): Cho hàm số y . 1 x 1) Khảo sát và vẽ đồ thị C của hàm số trên. 2) Gọi (d) là đường thẳng qua A( 1; 1 ) và có hệ số góc k. Tìm k sao cho (d) cắt ( C ) tại hai điểm M, N và MN 3 10 .Câu II (2 điểm):1) Giải phương trình: sin 3x 3sin 2 x cos 2 x 3sin x 3cos x 2 0 . x 2 y 2 xy 1 4 y2) Giải hệ phương trình: . y ( x y )2 2 x 2 7 y 2 2 3sin x 2cos xCâu III (1 điểm): Tính tích phân: I dx (sin x cos x)3 0Câu IV (1 điểm):Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật với SA vuông góc với đáy, G là trọng tâm tam giácSAC, mặt phẳng (ABG) cắt SC tại M, cắt SD tại N. Tính thể tích của khối đa diện MNABCD biết SA=AB=avà góc hợp bởi đường thẳng AN và mp(ABCD) bằng 300 . Câu V (1 điểm): Cho các số dương a, b, c : ab bc ca 3. 1 1 1 1 . Chứng minh rằng: 2 2 2 1 a (b c ) 1 b (c a ) 1 c (a b) abcII. PHẦN RIÊNG (3 điểm) (Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc phần 2)).1. Theo chương trình Chuẩn :Câu VI.a (2 điểm):1) Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn hai đường tròn (C ) : x 2 y 2 – 2 x – 2 y 1 0, (C ) : x 2 y 2 4 x – 5 0 cùng đi qua M(1; 0). Viết phươngtrình đường thẳng qua M cắt hai đường tròn (C ), (C ) lần lượt tại A, B sao cho MA= 2MB.2) Trong không gian với hệ tọa độ Oxyz, hãy xác định toạ độ tâm và bán kính đường tròn ngoại tiếp tamgiác ABC, biết A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3).Câu VII.a (1 điểm): Khai triển đa thức: (1 3x )20 a0 a1 x a2 x 2 ... a20 x 20 . Tính tổng: S a0 2 a1 3 a2 ... 21 a20 .2. Theo chương trình Nâng cao :Câu VI.b (2 điểm)1) Trong mặt phẳng với hệ toạ độ Oxy, hãy viết phương trình các cạnh của tam giác ABC biết trực tâmH (1;0) , chân đường cao hạ từ đỉnh B là K (0; 2) , trung điểm cạnh AB là M (3;1) . x 1 y z 1 xyz2) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: (d1 ) : và (d 2 ) : . 2 112 1 1Tìm tọa độ các điểm M thuộc (d1 ) và N thuộc (d 2 ) sao cho đường thẳng MN song song với mặt phẳngP : x – y z 2010 0 độ dài đoạn MN bằng 2. 2 log1 x ( xy 2 x y 2) log 2 y ( x 2 2 x 1) 6 Câu VII.b (1 điểm): Giải hệ phương trình log1 x ( y 5) log 2 y ( x 4) =1 ………………………………….....................HẾT……………………………………………………Câu Phần Nội dung Điểm Làm đúng, đủ các bước theo Sơ đồ khảo sát hàm số cho điểm tối đa. I 1,0(2,0) 1(1,0) 2(1,0) Từ giả thiết ta có: (d ) : y k ( x 1) 1. Bài toán trở thành: Tìm k để hệ phương trình sau 0,25 2 2 có hai nghiệm ( x1 ; y1 ), ( x2 ; y2 ) phân biệt sao cho x2 x1 y2 y1 90(*) 2x 4 kx 2 (2k 3) x k 3 0 k ( x 1) 1 ...
Tìm kiếm theo từ khóa liên quan:
tuyển sinh năm 2011 đề thi năm 2011 đề thi thử đại học ôn thi toán học đề thi môn toánGợi ý tài liệu liên quan:
-
Đề thi thử đại học môn Vật lý - Khối A, A1, V: Đề số 7
5 trang 96 0 0 -
500 Bài toán bất đẳng thức - Cao Minh Quang
49 trang 48 0 0 -
11 trang 36 0 0
-
Trắc nghiệm sinh học phần kỹ thuật di truyền + đáp án
6 trang 34 0 0 -
Đề thi chọn học sinh giỏi tỉnh Phú Yên
5 trang 33 0 0 -
60 ĐỀ TOÁN ÔN THI TN THPT (có đáp án) Đề số 59
2 trang 29 0 0 -
Đề thi thử trường THCS-THPT Hồng Vân
6 trang 28 0 0 -
1 trang 28 0 0
-
Trường THPT chuyên Huỳnh Mẫn Đạt - ĐỀ THI HỌC KỲ II MÔN TOÁN KHỐI 12 NĂM HỌC 2010-2011
6 trang 27 0 0 -
Chuyên đề ôn thi đại học môn toán - Bài tập Hình học không gian
3 trang 25 0 0