Danh mục

Đề thi KSCL môn Toán năm 2020 lần 2 - THPT Chuyên Lê Hồng Phong, Nam Định

Số trang: 6      Loại file: pdf      Dung lượng: 247.54 KB      Lượt xem: 9      Lượt tải: 0    
Jamona

Phí lưu trữ: miễn phí Tải xuống file đầy đủ (6 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Cùng tham gia thử sức với Đề thi KSCL môn Toán năm 2020 lần 2 - THPT Chuyên Lê Hồng Phong, Nam Định để nâng cao tư duy, rèn luyện kĩ năng giải đề và củng cố kiến thức về môn Toán căn bản. Chúc các em vượt qua kì thi thật dễ dàng nhé!
Nội dung trích xuất từ tài liệu:
Đề thi KSCL môn Toán năm 2020 lần 2 - THPT Chuyên Lê Hồng Phong, Nam Định SỞ GD & ĐT NAM ĐỊNH ĐỀ KIỂM TRA CHẤT LƯỢNG CUỐI NĂM TRƯỜNG THPT CHUYÊN NĂM HỌC 2019-2020 LÊ HỒNG PHONG Môn: TOÁN LỚP 12 ĐỀ CHÍNH THỨC Thời gian làm bài: 90 phút (Đề thi có 6 trang) Ngày 18, 19, 20/6/2020 —————————– Mã đề thi 184Câu 1.Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên? y A. y = −x4 + 3x2 . B. y = x3 − 3x2 − 3. O x C. y = x4 + 3x2 − 1. D. y = −x3 + 3x2 − 3.Câu 2. Khối đa diện đều loại {3; 4} có tất cả bao nhiêu cạnh? A. 20. B. 12 . C. 6. D. 30. ax + 3Câu 3. Biết đường tiệm cận ngang của đồ thị hàm số y = đi qua điểm A(2021; 2). Giá trị x−1của a là A. a = −2. B. a = −2021. C. a = 2021. D. a = 2.Câu 4. Trong không gian Oxyz, cho mặt cầu (S) : x2 + y 2 + z 2 − 8x + 2y + 2 = 0. Tâm I của mặtcầu (S) có tọa độ là A. I(−4; 1; 0). B. I(4; −1; 0). C. I(−8; 2; 2). D. I(4; −1; −1).Câu 5. Cho hàm số f (x) có bảng biến thiên như sau x −∞ −1 0 1 +∞ f 0 (x) + 0 − 0 + 0 − 2 2 f (x) −∞ 1 −∞Hàm số đã cho nghịch biến trên khoảng nào dưới đây? A. (1; +∞). B. (−1; 1). C. (−∞; 0). D. (0; 1). 2 −7xCâu 6. Số nghiệm của phương trình 52x = 1 là A. 0. B. 1. C. 3. D. 2. 1Câu 7. Tìm công bội q của cấp số nhân (vn ) biết số hạng đầu tiên là v1 = và v6 = 16. 2 1 1 A. q = − . B. q = 2. C. q = −2. D. q = . 2 2Câu 8. Cho hàm số y = f (x) có bảng xét dấu đạo hàm như hình bên dưới Trang 1/6 Mã đề 184 x −∞ −1 0 1 2 +∞ 0 f (x) − 0 − 0 + + 0 −Tìm điểm cực tiểu của hàm số y = f (x). A. x = 2. B. x = 1. C. x = 0. D. x = −1.Câu 9. Cho số phức z thỏa mãn z = −3 + 2i, điểm biểu diễn số phức z trên mặt phẳng tọa độ Oxycó tọa độ là A. (3; −3). B. (3; 2). C. (−3; −2). D. (−3; −3).Câu 10. Cho hai số phức z1 = 1 + i và z2 = 2 − 5i. Tính môđun của số phức z1 + z2 . √ √ A. |z1 + z2 | = 5. B. |z1 + z2 | = 5. C. |z1 + z2 | = 13. D. |z1 + z2 | = 1.Câu 11. Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng ngang? A. 5. B. 55 . C. 5!.  D. 25.     x =t  Câu 12. Trong không gian Oxyz, cho đường thẳng d : y = −1 + 3t . Điểm nào dưới đây thuộc    z = −2t đường thẳng d? A. P (2; 7; −4). B. M (3; 8; 6). C. N (−1; −4; −2). D. Q(5; 14; −10).Câu 13. Số phức liên hợp của z = (3 − 4i) + 2 + 3i là A. z¯ = 5 − 7i. B. z¯ = −5 + 7i. C. z¯ = 5 + 7i. D. z¯ = 1 − i. Z5 Z5 f (x)Câu 14. Nếu f (x) dx = 2020 thì dx bằng 2020 −1 −1 1 A. 1. B. 2020. C. 4. D. . ...

Tài liệu được xem nhiều: