Danh mục

Đề thi ôn thi đại học môn toán - Đề số 19

Số trang: 9      Loại file: pdf      Dung lượng: 157.67 KB      Lượt xem: 14      Lượt tải: 0    
10.10.2023

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề thi ôn thi đại học môn toán - đề số 19, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề thi ôn thi đại học môn toán - Đề số 19 Đề số 19I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I (2 điểm) Cho hàm số y  x 3  3x 2  4 . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Gọi d là đường thẳng đi qua điểm A(3; 4) và có hệ số góc là m. Tìm m để d cắt (C) tại 3 điểm phân biệt A, M, N sao cho hai tiếp tuyến của (C) tại M và N vuông góc với nhau.Câu II (2điểm)  x2  1  y( x  y)  4 y  1) Giải hệ phương trình: ( x, y  R ) 2 ( x  1)( x  y  2)  y  sin 3 x.sin 3x  cos3 x cos3x 1 2) Giải phương trình:     8  tan  x   tan  x   6  3  1Câu III (1 điểm) Tính tích phân: I   x ln( x 2  x  1)dx 0Câu IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với tâm O của tam giác ABC. Một mặt phẳng (P) chứa BC và vuông góc với AA’, cắt lăng trụ a2 3 theo một thiết diện có diện tích bằng . Tính thể tích khối lăng trụ 8 ABC.A’B’C’.Câu V (1 điểm) Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Tìm giá trị lớn 1 1 1 nhất của biểu thức P  2 2 a  2b  3 b  2c  3 c  2a 2  3 2 2 2II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩnCâu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho  ABC có đỉnh A(1;2), phương trình đường trung tuyến BM: 2 x  y  1  0 và phân giác trong CD: x  y  1  0 . Viết phương trình đường thẳng BC. 2) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (D) có phương trình tham số  x  2  t; y  2t ; z  2  2t . Gọi  là đường thẳng qua điểm A(4;0;–1) song song với (D) và I(–2;0;2) là hình chiếu vuông góc của A trên (D). Viết phương trình của mặt phẳng chứa  và có khoảng cách đến (D) là lớn nhất.Câu VII.a (1điểm) Tìm hệ số của số hạng chứa x2 trong khai triển nhị thức Niutơn n  1 của  x  4  , biết rằng n là số nguyên dương thỏa mãn: 2 x  2n 1 n 6560 2 2 1 23 2 ( Cnk là số tổ hợp chập k của n 0 Cn  Cn   2Cn  Cn  n 1 n 1 2 3 phần tử) B. Theo chương trình nâng caoCâu VI.b (2 điểm) 1) Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường thẳng d1: x + y + 5 = 0, d2: x + 2y – 7= 0 và tam giác ABC có A(2; 3), trọng tâm là điểm G(2; 0), điểm B thuộc d1 và điểm C thuộc d2 . Viết phương trình đường tròn ngoại tiếp tam giác ABC. 2) Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC với A(1; 2; 5), B(1; 4; 3), C(5; 2; 1) và mặt phẳng (P): x – y – z – 3 = 0. Gọi M là một điểm thay đổi trên mặt phẳng (P). Tìm giá trị nhỏ nhất của biểu thức MA2  MB 2  MC 2 . x y x y e  e  2( x  1)Câu VII.b (1 điểm) Giải hệ phương trình  x  y (x, y  R )   x  y 1 e  Hướng dẫn Đề số 19Câu I: 2) d có phương trình y = m(x – 3) + 4. Hoành độ giao điểm của d và (C) là nghiệm của phương trình: x  3 x 3  3x 2  4  m( x  3)  4  ( x  3)( x 2  m)  0   2 x  m  0 Theo bài ra ta có điều kiện m > 0 và y ( m ). y (  m )  1 ...

Tài liệu được xem nhiều: