Danh mục

ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN 2011 - 5

Số trang: 6      Loại file: doc      Dung lượng: 385.50 KB      Lượt xem: 16      Lượt tải: 0    
Hoai.2512

Hỗ trợ phí lưu trữ khi tải xuống: 2,000 VND Tải xuống file đầy đủ (6 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu đề thi thử đại học môn toán 2011 - 5, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
ĐỀ THI THỬ ĐẠI HỌC MÔN TOÁN 2011 - 5Trường THPT LAM KINH- Kiểm tra chất lượng ôn thi ĐH – CĐ (Lần 2) Môn: Toán (khối a), năm học 2009 – 2010 Thanh Hóa Thời gian: 180 phút (không kể thời gian giao đề) PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7.0 điểm)Câu I (2.0 điểm) Cho hàm số y = x 3 − 3 x 2 + 2 1. Khảo sát và vẽ đồ thị (C) của hàm số. m 2. Biện luận số nghiệm của phương trình x − 2 x − 2 = 2 theo tham số m. x −1Câu II (2.0 điểm ) 3 − 4 sin 2 2 x = 2 cos 2 x ( 1 + 2 sin x ) 1. Giải phương trình: log x x 2 − 14 log16 x x 3 + 40 log 4 x x = 0. 2. Giải phương trình: 2 π 3 x sin x ∫ cosCâu III (1.0 điểm) Tính tích phân I = dx. 2 x −π 3 x −1 y z + 2 ==Câu IV(1.0điểm) Trong không gian Oxyz cho đường thẳng d: và mặt phẳng −3 2 1 ( P ) : 2 x + y + z − 1 = 0 .Tìm tọa độ giao điểm A của đường thẳng d với mặt phẳng ( P ) . Viết phương trình của đường thẳng ∆ đi qua điểm A vuông góc với d và nằm trong ( P ) .Câu V:(1.0điểm) Trong không gian với hệ toạ độ Oxyz , cho hai điểm A(1;1;2) , B (2;0;2) . Tìm quỹ tích điểm cách đều hai mặt phẳng (OAB) và (Oxy ) .cácPHẦN RIÊNG ( 3.0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)A.Theo chương trình ChuẩnCâu VI.a(2.0 điểm) x2 − 3 . Tìm giá trị nhỏ nhất của f ( x) và chứng minh rằng 1. Cho hàm số f ( x) = e x − sin x + 2 f ( x) = 0 có đúng hai nghiệm.  z1 .z 2 = −5 − 5.i 2. Giải hệ phương trình sau trong tập hợp số phức:   z1 + z 2 = −5 + 2.i 2 2Câu VII.a(1.0 điểm) Trong mặt phẳng Oxy cho ∆ABC có A ( 0; 5 ) . Các đường phân giác và trungtuyến xuất phát từ đỉnh B có phương trình lần lượt là d1 : x − y + 1 = 0 ,d 2 : x − 2 y = 0. Viết phươngtrình ba cạnh của tam giác ABC.B.Theo chương trình Nâng caoCâu VI.b (2.0 điểm) 1 x+2 1 x +1 1. Giải phương trình 3.4 + .9 = 6.4 − .9 . x x 3 4 π 2. Tính diện tích hình phẳng giới hạn bởi các đường sau: y = x.sin2x, y = 2x, x = 2 Câu VII.b (1.0 điểm) Cho hình chóp tứ giác đều SABCD có cạnh bên bằng a và mặt chéo SAC là tam giác đều. Qua A dựng mặt phẳng ( P ) vuông góc với SC .Tính diện tích thiết diện tạo bởi mặt phẳng ( P ) và hình chóp. Hết đề …Họ và tên thí sinh:. . . . . . . . . . . . . . . . . . . . . . . . . ……… …………….. ; Số báo danh:. . . . . . . . . ĐÁP ÁN ĐỀ THI THỬ ĐH – CĐ TRƯỜNG THPT LAM KINH 2010 2 điểmCâu Ia) Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x 3 − 3 x 2 + 2. • Tập xác định: Hàm số có tập xác định D = R. 0,25 x = 0 • Sự biến thiên: y = 3 x − 6 x. Ta có y = 0 ⇔  2 x = 2 • yCD = y ( 0 ) = 2; yCT = y ( 2 ) = −2. 0,25 • Bảng b ...

Tài liệu được xem nhiều: