Thông tin tài liệu:
Tham khảo đề thi - kiểm tra đề thi thử lớp 10 chuyên toán học 2013 - phần 2 - đề 1, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Đề Thi Thử Lớp 10 Chuyên Toán Học 2013 - Phần 2 - Đề 1 ĐỀ THI TUYỂN SINH VÀO LỚP 10 Ngày 28 tháng 4 Năm 2013Câu 1. (2,0 điểm) x 2 x 2 Cho biểu thức Q x 2 x 1 x 1 x x , với x 0, x 1 a. Rút gọn biểu thức Q b. Tìm các giá trị nguyên của x để Q nhận giá trị nguyên.Câu 2. (1,5 điểm) Cho phương trình x 2 2(m 1)x m 2 0 , với x là ẩn số, m R a. Giải phương trình đã cho khi m – 2 b. Giả sử phương trình đã cho có hai nghiệm phân biệt x1 và x 2 . Tìm hệ thức liên hệ giữa x1 và x 2 mà không phụ thuộc vào m.Câu 3. (2,0 điểm) (m 1)x (m 1)y 4m Cho hệ phương trình , với m R x (m 2)y 2 a. Giải hệ đã cho khi m –3 b. Tìm điều kiện của m để phương trình có nghiệm duy nhất. Tìm nghiệm duy nhất đó.Câu 4. (2,0 điểm) Cho hàm số y x 2 có đồ thị (P). Gọi d là đường thẳng đi qua điểm M(0;1) và có hệ số góc k. a. Viết phương trình của đường thẳng d b. Tìm điều kiện của k để đt d cắt đồ thị (P) tại hai điểm phân biệt.Câu 5. (2,5 điểm) Cho tam giác nhọn ABC (AB < AC < BC) nội tiếp trong đường tròn (O). Gọi H là giao điểm củahai đường cao BD và CE của tam giác ABC (D AC, E AB) a. Chứng minh tứ giác BCDE nội tiếp trong một đường tròn b. Gọi I là điểm đối xứng với A qua O và J là trung điểm của BC. Chứng minh rằng ba điểm H, J, Ithẳng hàng 1 1 1 c. Gọi K, M lần lượt là giao điểm của AI với ED và BD. Chứng minh rằng 2 2 DK DA DM 2 HƯỚNG DẪN GIẢICâu 1. x 2 x 2 x 2 x 2 a. Q x 2 x 1 x 1 x x x x 1 2 x 1 x 1 x 1 x 2 x 2 x 11 x 1 1 1 1 x 1 x x 1 x 1 1 x x 1 x 1 x 1 x 1 1 1 x 1 x 1 2 x 2x 2x x x 1 . x x 1 . x x 1 . Vậy Q x 1 x 1 x 1 2x 2x 2 2 2 2b. Q nhận giá trị nguyên: Q 2 Q ¢ khi ¢ khi 2 chia hết cho x 1 x 1 x 1 x 1 x 1 x 0 x 2 x 1 1 x 2 đối chiếu điều kiện thì x 1 2 x 1 x 3 x 3Câu 2. Cho pt x 2 2(m 1)x m 2 0 , với x là ẩn số, m Ra. Giải phương trình đã cho khi m – 2 . Ta có phương trình x 2 2x 4 0 2 x 1 5 x 1 5 2 x 2 2x 4 0 x 2 2x 1 5 x 1 5 5 x 1 ...