Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 15
Số trang: 6
Loại file: pdf
Dung lượng: 250.02 KB
Lượt xem: 14
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 15 để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi
Nội dung trích xuất từ tài liệu:
Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 15TRƯỜNG THPT LƯƠNG THẾ VINH KỲ THI TỐT NGHIỆP THPT ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 15 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ ---------------------------------------------------I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 1 4Câu I (3,0 điểm): Cho hàm số: y = x - 2x 2 2 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số nêu trên. 2) Dùng đồ thị (C ) để biện luận số nghiệm của phương trình: x 4 - 4x 2 = 2m . 3) Tính diện tích hình phẳng giới hạn bởi đồ thị (C ) với trục hoành.Câu II (3,0 điểm): 1) Giải phương trình: log (x + 2) = 2 log2 x + 2 2 2 2 2) Tính tích phân: I = ò0 x (x - 1)2dx 3) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = 4 - x2Câu III (1,0 điểm): Hình chóp S.ABC có BC = 2a, đáy ABC là tam giác vuông tại C, SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi I là trung điểm cạnh AB. 1) Chứng minh rằng, đường thẳng SI vuông góc với mặt đáy (A BC ) . 2) Biết mặt bên (SAC) hợp với đáy (ABC) một góc 600. Tính thể tích khối chóp S.ABC.II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây1. Theo chương trình chuẩnCâu IVa (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (3;1; - 1), B (2; - 1; 4)và mặt phẳng (P ) : 2x - y + 3z - 1 = 0 1) Viết phương trình đường thẳng AB và phương trình mặt cầu đường kính AB. 2) Viết phương trình mặt phẳng (Q ) chứa hai điểm A,B, đồng thời vuông góc với mp(P).Câu Va (1,0 điểm): Giải phương trình sau đây trên tập số phức: - 5z 3 + 2z 2 - z = 02. Theo chương trình nâng caoCâu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (Q): 2x - y + 2z - 2 = 0 1) Viết phương trình mặt cầu (S ) tâm I(3;–1;2) tiếp xúc với (Q). Tìm toạ độ tiếp điểm. 2) Viết phương trình mặt phẳng (P) đi qua hai điểm A (1; - 1;1), B (0; - 2;3) , đồng thời tạo với mặt cầu (S ) một đường tròn có bán kính bằng 2.Câu Vb (1,0 điểm): Trên mặt phẳng phức, tìm tập hợp các điểm biểu diễn số phức z thỏa điều kiện: 2z - i = 4 - i + 2z ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm.Họ và tên thí sinh: ........................................ Số báo danh:............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: ................................. BÀI GIẢI CHI TIẾT. 1 4Câu I: Hàm số: y = x - 2x 2 2 Tập xác định: D = ¡ Đạo hàm: y ¢ = 2x 3 - 4x é = 0 x Cho y ¢ = 0 Û 2x - 4x = 0 Û ê 3 ê ê = ± 2 x ë Giới hạn: lim y = + ¥ ; lim y = + ¥ x®- ¥ x® + ¥ Bảng biến thiên x – - 2 0 2 + y¢ – 0 + 0 – 0 + +¥ 0 +¥ y - 2 - 2 Hàm số ĐB trên các khoảng (- 2;0),( 2; + ¥ ) , NB trên các khoảng (- ¥ ; - 2),(0; 2) Hàm số đạt cực đại y CÑ = 0 tại x CÑ = 0 . y Hàm số đạt cực tiểu y CT = - 2 tại x CT = ± 2. Giao điểm với trục hoành: y= m é2= 0 x é = 0 x ...
Nội dung trích xuất từ tài liệu:
Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 15TRƯỜNG THPT LƯƠNG THẾ VINH KỲ THI TỐT NGHIỆP THPT ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 15 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ ---------------------------------------------------I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 1 4Câu I (3,0 điểm): Cho hàm số: y = x - 2x 2 2 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số nêu trên. 2) Dùng đồ thị (C ) để biện luận số nghiệm của phương trình: x 4 - 4x 2 = 2m . 3) Tính diện tích hình phẳng giới hạn bởi đồ thị (C ) với trục hoành.Câu II (3,0 điểm): 1) Giải phương trình: log (x + 2) = 2 log2 x + 2 2 2 2 2) Tính tích phân: I = ò0 x (x - 1)2dx 3) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = 4 - x2Câu III (1,0 điểm): Hình chóp S.ABC có BC = 2a, đáy ABC là tam giác vuông tại C, SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi I là trung điểm cạnh AB. 1) Chứng minh rằng, đường thẳng SI vuông góc với mặt đáy (A BC ) . 2) Biết mặt bên (SAC) hợp với đáy (ABC) một góc 600. Tính thể tích khối chóp S.ABC.II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây1. Theo chương trình chuẩnCâu IVa (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (3;1; - 1), B (2; - 1; 4)và mặt phẳng (P ) : 2x - y + 3z - 1 = 0 1) Viết phương trình đường thẳng AB và phương trình mặt cầu đường kính AB. 2) Viết phương trình mặt phẳng (Q ) chứa hai điểm A,B, đồng thời vuông góc với mp(P).Câu Va (1,0 điểm): Giải phương trình sau đây trên tập số phức: - 5z 3 + 2z 2 - z = 02. Theo chương trình nâng caoCâu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (Q): 2x - y + 2z - 2 = 0 1) Viết phương trình mặt cầu (S ) tâm I(3;–1;2) tiếp xúc với (Q). Tìm toạ độ tiếp điểm. 2) Viết phương trình mặt phẳng (P) đi qua hai điểm A (1; - 1;1), B (0; - 2;3) , đồng thời tạo với mặt cầu (S ) một đường tròn có bán kính bằng 2.Câu Vb (1,0 điểm): Trên mặt phẳng phức, tìm tập hợp các điểm biểu diễn số phức z thỏa điều kiện: 2z - i = 4 - i + 2z ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm.Họ và tên thí sinh: ........................................ Số báo danh:............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: ................................. BÀI GIẢI CHI TIẾT. 1 4Câu I: Hàm số: y = x - 2x 2 2 Tập xác định: D = ¡ Đạo hàm: y ¢ = 2x 3 - 4x é = 0 x Cho y ¢ = 0 Û 2x - 4x = 0 Û ê 3 ê ê = ± 2 x ë Giới hạn: lim y = + ¥ ; lim y = + ¥ x®- ¥ x® + ¥ Bảng biến thiên x – - 2 0 2 + y¢ – 0 + 0 – 0 + +¥ 0 +¥ y - 2 - 2 Hàm số ĐB trên các khoảng (- 2;0),( 2; + ¥ ) , NB trên các khoảng (- ¥ ; - 2),(0; 2) Hàm số đạt cực đại y CÑ = 0 tại x CÑ = 0 . y Hàm số đạt cực tiểu y CT = - 2 tại x CT = ± 2. Giao điểm với trục hoành: y= m é2= 0 x é = 0 x ...
Tìm kiếm theo từ khóa liên quan:
Đề thi thử tốt nghiệp môn toán Đề thi thử TN toán 12 Đề ôn thi tốt nghiệp THPT môn toán Đề ôn thi tốt nghiệp toán 12 Đề thi môn toán 12 Đề thi thử TN THPT môn Toán trường Lương Thế VinhGợi ý tài liệu liên quan:
-
Tuyển tập 20 đề thi tốt nghiệp môn Toán của Bộ Giáo dục - Đặng Việt Đông
474 trang 35 0 0 -
25 Đề ôn thi tốt nghiệp THPT môn toán và đáp án
92 trang 29 0 0 -
Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 1
1 trang 26 0 0 -
Trường THPT chuyên Huỳnh Mẫn Đạt - ĐỀ THI HỌC KỲ II MÔN TOÁN KHỐI 12 NĂM HỌC 2010-2011
6 trang 26 0 0 -
Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 6
6 trang 21 0 0 -
Đề thi thử tốt nghiệp THPT môn Toán Đề Số 6
3 trang 20 0 0 -
Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 6
1 trang 19 0 0 -
Đề thi thử tốt nghiệp THPT môn Toán Đề Số 10
3 trang 18 0 0 -
Đề thi thử tốt nghiệp THPT môn Toán Đề Số 8
2 trang 18 0 0 -
Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 19
1 trang 16 0 0