Danh mục

Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 2

Số trang: 7      Loại file: pdf      Dung lượng: 241.30 KB      Lượt xem: 10      Lượt tải: 0    
Jamona

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 2 để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi
Nội dung trích xuất từ tài liệu:
Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 2TRƯỜNG THPT LƯƠNG THẾ VINH KỲ THI TỐT NGHIỆP THPT ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 2 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ ---------------------------------------------------I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)Câu I (3,0 điểm): Cho hàm số: y = (1 - x )2 (4 - x ) 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Viết phương trình tiếp tuyến của đồ thị (C ) tại giao điểm của (C ) với trục hoành. 3) Tìm m để phương trình sau đây có 3 nghiệm phân biệt: x 3 - 6x 2 + 9x - 4 + m = 0Câu II (3,0 điểm): 1) Giải phương trình: 22x + 1 - 3.2x - 2 = 0 1 x 2) Tính tích phân: I = ò (1 + x )e dx 0 3) Tìm giá trị lớn nhất và nhỏ nhất của hàm số: y = e x (x 2 - x - 1) trên đoạn [0;2].Câu III (1,0 điểm): Cho hình chóp đều S.ABCD có cạnh đáy 2a, góc giữa cạnh bên và mặt đáy bằng 600. Tính thể tích của hình chóp.II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây1. Theo chương trình chuẩnCâu IVa (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho A (2; 0; - 1), B (1; - 2;3), C (0;1;2) . 1) Chứng minh 3 điểm A,B,C không thẳng hàng. Viết phương trình mặt phẳng (A BC ) . 2) Tìm toạ độ hình chiếu vuông góc của gốc toạ độ O lên mặt phẳng (A BC ) .Câu Va (1,0 điểm): Tìm số phức liên hợp của số phức z biết rằng: z + 2z = 6 + 2i .2. Theo chương trình nâng caoCâu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz cho A (2; 0; - 1), B (1; - 2;3), C (0;1;2) 1) Chứng minh 3 điểm A,B,C không thẳng hàng. Viết phương trình mặt phẳng (A BC ) . 2) Viết phương trình mặt cầu tâm B, tiếp xúc với đường thẳng AC.Câu Vb (1,0 điểm): Tính môđun của số phức z = ( 3 - i )2011 . ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm.Họ và tên thí sinh: ........................................ Số báo danh:............................................... BÀI GIẢI CHI TIẾT.Câu I : y = (1 - x ) (4 - x ) = (1 - 2x + x )(4 - x ) = 4 - x - 8x + 2x 2 + 4x 2 - x 3 2 2 = - x 3 + 6x 2 - 9x + 4  y = - x 3 + 6x 2 - 9x + 4  Tập xác định: D = ¡  Đạo hàm: y ¢ = - 3x 2 + 12x - 9 é = 1 x  Cho y ¢ = 0 Û - 3x 2 + 12x - 9 = 0 Û ê ê = 3 x ê ë  Giới hạn: lim y = + ¥ ; lim y = - ¥ x®- ¥ x® + ¥  Bảng biến thiên x – 1 3 + y¢ – 0 + 0 – + 4 y 0 –  Hàm số ĐB trên khoảng (1;3), NB trên các khoảng (–;1), (3;+) Hàm số đạt cực đại y CÑ = 4 tại x CÑ = 3 ; y đạt cực tiểu y CT = 0 tại x CT = 1  y ¢ = - 6x + 12 = 0 Û x = 2 Þ y = 2 . Điểm uốn là I(2;2) ¢ é = 1 x 4  Giao điểm với trục hoành: y = 0 Û - x 3 + 6x 2 - 9x + 4 = 0 Û ê ê = 4 x ê ë Giao điểm với trục tung: x = 0 Þ y = 4 2  Bảng giá trị: x 0 1 2 3 4 y 4 0 2 4 0  Đồ thị hàm số: nhận điểm I làm trục đối xứng như hình vẽ bên đây O 1 2 3 4 x  (C ) : y = - x 3 + 6x 2 - 9x + 4 . Viết pttt tại giao điểm của (C ) với trục hoành. ...

Tài liệu được xem nhiều: