Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 9
Số trang: 7
Loại file: pdf
Dung lượng: 238.62 KB
Lượt xem: 12
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 9 để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi
Nội dung trích xuất từ tài liệu:
Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 9TRƯỜNG THPT LƯƠNG THẾ VINH KỲ THI TỐT NGHIỆP THPT ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 9 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ ---------------------------------------------------I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)Câu I (3,0 điểm): Cho hàm số: y = 2x 3 + (m + 1)x 2 + (m 2 - 4)x - m + 1 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số khi m = 2. 2) Viết phương trình tiếp tuyến của (C ) tại giao điểm của (C ) với trục tung. 3) Tìm các giá trị của tham số m để hàm số đạt cực tiểu tại x = 0.Câu II (3,0 điểm): 1) Giải phương trình: 2 log2 (x - 2) + log 0,5 (2x - 1) = 0 1 (e x + 1)2 2) Tính tích phân: I = ò0 dx ex x2 - 3) Cho hàm số y = x .e 2 . Chứng minh rằng, xy ¢= (1 - x 2 )yCâu III (1,0 điểm): Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = a, BC = 2a. Hai mặt bên (SAB) và (SAD) vuông góc với đáy, cạnh SC hợp với đáy một góc 600. Tính thể tích khối chóp S.ABCD.II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây1. Theo chương trình chuẩnCâu IVa (2,0 điểm): Trong không gian Oxyz , choA (0;1;2), B (- 2; - 1; - 2), C (2; - 3; - 3), D (- 1;2; - 4) 1) Chứng minh rằng ABC là tam giác vuông. Tính diện tích của tam giác ABC. 2) Viết phương trình mặt phẳng (ABC). Tính thể tích tứ diện ABCD.Câu Va (1,0 điểm): Giải phương trình sau đây trên tập số phức: 2w2 - 2w + 5 = 02. Theo chương trình nâng caoCâu IVb (2,0 điểm): Trong không gian Oxyz , cho A (0;1;2), B (- 2; - 1; - 2), C (2; - 3; - 3) 1) Chứng minh rằng ABC là tam giác vuông. Tính diện tích của tam giác ABC. 2) Viết phương trình đường thẳng D đi qua điểm B đồng thời vuông góc với mặt phẳng (ABC). Xác định toạ độ điểm D trên D sao cho tứ diện ABCD có thể tích bằng 14.Câu Vb (1,0 điểm): Giải phương trình sau đây trên tập số phức: 2 z + 4z = 8i ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh:............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: ................................. BÀI GIẢI CHI TIẾT.Câu I: Với m = 2 ta có hàm số: y = 2x 3 + 3x 2 - 1 Tập xác định: D = ¡ Đạo hàm: y ¢ = 6x 2 + 6x Cho y ¢= 0 Û 6x 2 + 6x = 0 Û x = 0 hoac x = - 1 Giới hạn: lim y = - ¥ ; lim y = + ¥ x®- ¥ x® +¥ Bảng biến thiên x – –1 0 +¥ y¢ + 0 – 0 + 0 +¥ y – –1 Hàm số ĐB trên các khoảng (- ¥ ; - 1),(0; + ¥ ) , NB trên khoảng (- 1;0) Hàm số đạt cực đại yCĐ = 0 tại x CÑ = - 1 , đạt cực tiểu yCT = –1 tại x CT = 0 . 1 1 æ 1 1ö y ¢ = 12x + 6 = 0 Û x = - ¢ Þ y = - . Điểm uốn: I ç- ; - ÷ ç ç 2 2ø ÷ ÷ 2 2 è Giao điểm với trục hoành: y 1 cho y = 0 Û 2x 3 + 3x 2 - 1 = 0 Û x = - 1 hoac x = 2 Giao điểm với trục tung: cho x = 0 Þ y = - 1 3 1 1 Bảng giá trị: x - - 1 - 0 2 2 2 -1 O y - 1 0 - 1 - 1 0 1 x 2 2 Đồ thị hàm số: như hình vẽ bên đây -1 Giao điểm của (C ) với trục tung: A (0; - 1) x0 = 0 ; y0 = - 1 f¢ = 0 (0) Vậy, pttt tại A(0;–1) là: y + 1 = 0(x - 0) Û y = - 1 y = 2x 3 + (m + 1)x 2 + (m 2 - 4)x - m + 1 Tập xác định D = ¡ y ¢ = 6x 2 + 2(m + 1)x + m 2 - 4 y ¢ = 12x + 2(m + 1) ¢ Hàm số đạt cực tiểu tại x 0 = 0 khi và chỉ kh ...
Nội dung trích xuất từ tài liệu:
Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 9TRƯỜNG THPT LƯƠNG THẾ VINH KỲ THI TỐT NGHIỆP THPT ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 9 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ ---------------------------------------------------I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)Câu I (3,0 điểm): Cho hàm số: y = 2x 3 + (m + 1)x 2 + (m 2 - 4)x - m + 1 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số khi m = 2. 2) Viết phương trình tiếp tuyến của (C ) tại giao điểm của (C ) với trục tung. 3) Tìm các giá trị của tham số m để hàm số đạt cực tiểu tại x = 0.Câu II (3,0 điểm): 1) Giải phương trình: 2 log2 (x - 2) + log 0,5 (2x - 1) = 0 1 (e x + 1)2 2) Tính tích phân: I = ò0 dx ex x2 - 3) Cho hàm số y = x .e 2 . Chứng minh rằng, xy ¢= (1 - x 2 )yCâu III (1,0 điểm): Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = a, BC = 2a. Hai mặt bên (SAB) và (SAD) vuông góc với đáy, cạnh SC hợp với đáy một góc 600. Tính thể tích khối chóp S.ABCD.II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây1. Theo chương trình chuẩnCâu IVa (2,0 điểm): Trong không gian Oxyz , choA (0;1;2), B (- 2; - 1; - 2), C (2; - 3; - 3), D (- 1;2; - 4) 1) Chứng minh rằng ABC là tam giác vuông. Tính diện tích của tam giác ABC. 2) Viết phương trình mặt phẳng (ABC). Tính thể tích tứ diện ABCD.Câu Va (1,0 điểm): Giải phương trình sau đây trên tập số phức: 2w2 - 2w + 5 = 02. Theo chương trình nâng caoCâu IVb (2,0 điểm): Trong không gian Oxyz , cho A (0;1;2), B (- 2; - 1; - 2), C (2; - 3; - 3) 1) Chứng minh rằng ABC là tam giác vuông. Tính diện tích của tam giác ABC. 2) Viết phương trình đường thẳng D đi qua điểm B đồng thời vuông góc với mặt phẳng (ABC). Xác định toạ độ điểm D trên D sao cho tứ diện ABCD có thể tích bằng 14.Câu Vb (1,0 điểm): Giải phương trình sau đây trên tập số phức: 2 z + 4z = 8i ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh:............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: ................................. BÀI GIẢI CHI TIẾT.Câu I: Với m = 2 ta có hàm số: y = 2x 3 + 3x 2 - 1 Tập xác định: D = ¡ Đạo hàm: y ¢ = 6x 2 + 6x Cho y ¢= 0 Û 6x 2 + 6x = 0 Û x = 0 hoac x = - 1 Giới hạn: lim y = - ¥ ; lim y = + ¥ x®- ¥ x® +¥ Bảng biến thiên x – –1 0 +¥ y¢ + 0 – 0 + 0 +¥ y – –1 Hàm số ĐB trên các khoảng (- ¥ ; - 1),(0; + ¥ ) , NB trên khoảng (- 1;0) Hàm số đạt cực đại yCĐ = 0 tại x CÑ = - 1 , đạt cực tiểu yCT = –1 tại x CT = 0 . 1 1 æ 1 1ö y ¢ = 12x + 6 = 0 Û x = - ¢ Þ y = - . Điểm uốn: I ç- ; - ÷ ç ç 2 2ø ÷ ÷ 2 2 è Giao điểm với trục hoành: y 1 cho y = 0 Û 2x 3 + 3x 2 - 1 = 0 Û x = - 1 hoac x = 2 Giao điểm với trục tung: cho x = 0 Þ y = - 1 3 1 1 Bảng giá trị: x - - 1 - 0 2 2 2 -1 O y - 1 0 - 1 - 1 0 1 x 2 2 Đồ thị hàm số: như hình vẽ bên đây -1 Giao điểm của (C ) với trục tung: A (0; - 1) x0 = 0 ; y0 = - 1 f¢ = 0 (0) Vậy, pttt tại A(0;–1) là: y + 1 = 0(x - 0) Û y = - 1 y = 2x 3 + (m + 1)x 2 + (m 2 - 4)x - m + 1 Tập xác định D = ¡ y ¢ = 6x 2 + 2(m + 1)x + m 2 - 4 y ¢ = 12x + 2(m + 1) ¢ Hàm số đạt cực tiểu tại x 0 = 0 khi và chỉ kh ...
Tìm kiếm theo từ khóa liên quan:
Đề thi thử tốt nghiệp môn toán Đề thi thử TN toán 12 Đề ôn thi tốt nghiệp THPT môn toán Đề ôn thi tốt nghiệp toán 12 Đề thi môn toán 12 Đề thi thử TN THPT môn Toán trường Lương Thế VinhGợi ý tài liệu liên quan:
-
Tuyển tập 20 đề thi tốt nghiệp môn Toán của Bộ Giáo dục - Đặng Việt Đông
474 trang 39 0 0 -
25 Đề ôn thi tốt nghiệp THPT môn toán và đáp án
92 trang 32 0 0 -
Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 1
1 trang 29 0 0 -
Trường THPT chuyên Huỳnh Mẫn Đạt - ĐỀ THI HỌC KỲ II MÔN TOÁN KHỐI 12 NĂM HỌC 2010-2011
6 trang 27 0 0 -
Đề thi thử tốt nghiệp THPT môn toán trường Lương Thế Vinh đề số 6
6 trang 23 0 0 -
Đề thi thử tốt nghiệp THPT môn Toán Đề Số 6
3 trang 21 0 0 -
Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 6
1 trang 20 0 0 -
Đề ôn thi tốt nghiệp THPT môn toán năm 2013 đề số 29
1 trang 20 0 0 -
ĐỀ THI THỬ TỐT NGHIỆP MÔN TOÁN LỚP 12 ĐỀ 29
2 trang 19 0 0 -
Đề thi thử tốt nghiệp THPT môn Toán Đề Số 8
2 trang 19 0 0