![Phân tích tư tưởng của nhân dân qua đoạn thơ: Những người vợ nhớ chồng… Những cuộc đời đã hóa sông núi ta trong Đất nước của Nguyễn Khoa Điềm](https://timtailieu.net/upload/document/136415/phan-tich-tu-tuong-cua-nhan-dan-qua-doan-tho-039-039-nhung-nguoi-vo-nho-chong-nhung-cuoc-doi-da-hoa-song-nui-ta-039-039-trong-dat-nuoc-cua-nguyen-khoa-136415.jpg)
Đề thi tuyển sinh vào lớp 10 THPT năm học 2012 - 2013 môn toán - Sở giáo dục đào tạo tỉnh Bình Dương
Số trang: 5
Loại file: pdf
Dung lượng: 291.31 KB
Lượt xem: 8
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Các bạn học sinh và quý thầy cô tham khảo miễn phí Đề thi tuyển sinh vào lớp 10 THPT năm học 2012 - 2013 môn toán - Sở giáo dục đào tạo tỉnh Bình Dương để hệ thống kiến thức học tập cũng như trau dồi kinh nghiệm ra đề thi
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh vào lớp 10 THPT năm học 2012 - 2013 môn toán - Sở giáo dục đào tạo tỉnh Bình DươngSỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP THPT BÌNH DƯƠNG Năm học 2012 – 2013 ĐỀ CHÍNH THỨC Môn thi: Toán Thời gian làm bài: 120 phút (Không kể thời gian phát đề) 2 3Bài 1 (1 điểm): Cho biểu thức: A = 50 x 8x 5 4 1/ Rút gọn biểu thức A 2/ Tính giá trị của x khi A = 1Bài 2 (1,5 điểm): x21/ Vẽ đồ thị (P) hàm số y = 22/ Xác định m để đường thẳng (d): y = x – m cắt (P) tại điểm A có hoành độ bằng 1. Tìm tung độ của điểm ABài 3 (2 điểm): 2 x y 4 1/ Giải hệ phương trình: 3 x y 3 2/ Giải phương trình: x4 + x2 – 6 = 0Bài 4 (2 điểm): Cho phương trình x2 – 2mx – 2m – 5 = 0 (m là tham số) 1/ Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m 2/ Tìm m để x1 x2 đạt giá trị nhỏ nhất (x1; x2 là hai nghiệm của phương trình)Bài 5 (3,5 điểm): Cho đường tròn (O) và điểm M ở ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB và cáttuyến MPQ (MP < MQ). Gọi I là trung điểm của dây PQ, E là giao điểm thứ 2 giữa đường thẳng BI và đườngtròn (O). Chứng minh: 1/ Tứ giác BOIM nội tiếp. Xác định tâm của đường tròn ngoại tiếp tứ giác đó 2/ BOM = BEA 3/ AE // PQ 4/ Ba điểm O; I; K thẳng hàng, với K là trung điểm của EA HƯỚNG DẪN GIẢI: Nội dungBài 1 (1 điểm):1/ ĐKXĐ: x 0 2 3A= 50 x 8x 5 4 2 3 = 25.2 x 4.2 x 5 4 3 = 2 2x 2x 2 1 = 2x 2 1Vậy với x 0 thi A = 2x 2 12/ Khi A = 1 2x = 1 2 2x = 2 2x = 4 x = 2 (Thỏa điều kiện xác định)Vậy khi A = 1 giá trị của x = 2Bài 2 (1,5 điểm): x21/ Vẽ đồ thị (P) hàm số y = 2-Bảng giá trị x -4 -2 0 2 4 2 x y= 8 2 0 2 8 2-Đồ thị (P) là đường parabol đỉnh O(0; 0) nằm phía trên trục hoành, nhận trục tung làm trục đối xứng và điqua các điểm có tọa độ cho trong bảng trên.2/ Cách 1.Vì (d) cắt (P) tại điểm A có hoành độ bằng 1 nên x = 1 thỏa mãn công thức hàm số (P) => Tung độ của điểm 12 1A là: yA = = 2 2 1 1 A(1; ) (d) nên =1–m 2 2 1 1 m=1– = 2 2 1 1Vậy với m = thì (d): y = x – m cắt P tại điểm A có hoành độ bằng 1. Khi đó tung độ yA = 2 2Cách 2Ta có phương trình hoành độ giao điểm của (d) và (P) là:x2 = x – m x2 – 2x + 2m = 0 (*) 2Để (d) cắt (P) tại điểm A có hoành độ bằng 1 thì phương trình (*) có nghiệm bằng 1 1 12 – 2.1 + 2m = 0 m = 2 1 12 1Vậy với m = thì (d): y = x – m cắt P tại điểm A có hoành độ bằng 1. Khi đó tung độ yA = = 2 2 2Bài 3 (2 điểm):1/ Giải hệ phương trình2 x y 4 x 1 x 1 x 1 3 x y 3 3 x y 3 3.(1) y 3 y 6Vậy hệ phương trình có nghiệm duy nhất (-1; -6)2/ Giải phương trình x4 + x2 – 6 = 0 (1) 2Đặt x = t (t 0)Phương trình (1) trở thành: t2 + t – 6 = 0 (2)Ta có = 12 – 4.1.(-6) = 25 1 25 1 25Phương trình (2) có hai nghiệm t1 = = 2 (nhận) ; t2 = = -3 (loại) 2.1 2.1Với t = t1 = 2 => x2 = 2 x = 2Vậy phươn ...
Nội dung trích xuất từ tài liệu:
Đề thi tuyển sinh vào lớp 10 THPT năm học 2012 - 2013 môn toán - Sở giáo dục đào tạo tỉnh Bình DươngSỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP THPT BÌNH DƯƠNG Năm học 2012 – 2013 ĐỀ CHÍNH THỨC Môn thi: Toán Thời gian làm bài: 120 phút (Không kể thời gian phát đề) 2 3Bài 1 (1 điểm): Cho biểu thức: A = 50 x 8x 5 4 1/ Rút gọn biểu thức A 2/ Tính giá trị của x khi A = 1Bài 2 (1,5 điểm): x21/ Vẽ đồ thị (P) hàm số y = 22/ Xác định m để đường thẳng (d): y = x – m cắt (P) tại điểm A có hoành độ bằng 1. Tìm tung độ của điểm ABài 3 (2 điểm): 2 x y 4 1/ Giải hệ phương trình: 3 x y 3 2/ Giải phương trình: x4 + x2 – 6 = 0Bài 4 (2 điểm): Cho phương trình x2 – 2mx – 2m – 5 = 0 (m là tham số) 1/ Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m 2/ Tìm m để x1 x2 đạt giá trị nhỏ nhất (x1; x2 là hai nghiệm của phương trình)Bài 5 (3,5 điểm): Cho đường tròn (O) và điểm M ở ngoài đường tròn. Qua M kẻ các tiếp tuyến MA, MB và cáttuyến MPQ (MP < MQ). Gọi I là trung điểm của dây PQ, E là giao điểm thứ 2 giữa đường thẳng BI và đườngtròn (O). Chứng minh: 1/ Tứ giác BOIM nội tiếp. Xác định tâm của đường tròn ngoại tiếp tứ giác đó 2/ BOM = BEA 3/ AE // PQ 4/ Ba điểm O; I; K thẳng hàng, với K là trung điểm của EA HƯỚNG DẪN GIẢI: Nội dungBài 1 (1 điểm):1/ ĐKXĐ: x 0 2 3A= 50 x 8x 5 4 2 3 = 25.2 x 4.2 x 5 4 3 = 2 2x 2x 2 1 = 2x 2 1Vậy với x 0 thi A = 2x 2 12/ Khi A = 1 2x = 1 2 2x = 2 2x = 4 x = 2 (Thỏa điều kiện xác định)Vậy khi A = 1 giá trị của x = 2Bài 2 (1,5 điểm): x21/ Vẽ đồ thị (P) hàm số y = 2-Bảng giá trị x -4 -2 0 2 4 2 x y= 8 2 0 2 8 2-Đồ thị (P) là đường parabol đỉnh O(0; 0) nằm phía trên trục hoành, nhận trục tung làm trục đối xứng và điqua các điểm có tọa độ cho trong bảng trên.2/ Cách 1.Vì (d) cắt (P) tại điểm A có hoành độ bằng 1 nên x = 1 thỏa mãn công thức hàm số (P) => Tung độ của điểm 12 1A là: yA = = 2 2 1 1 A(1; ) (d) nên =1–m 2 2 1 1 m=1– = 2 2 1 1Vậy với m = thì (d): y = x – m cắt P tại điểm A có hoành độ bằng 1. Khi đó tung độ yA = 2 2Cách 2Ta có phương trình hoành độ giao điểm của (d) và (P) là:x2 = x – m x2 – 2x + 2m = 0 (*) 2Để (d) cắt (P) tại điểm A có hoành độ bằng 1 thì phương trình (*) có nghiệm bằng 1 1 12 – 2.1 + 2m = 0 m = 2 1 12 1Vậy với m = thì (d): y = x – m cắt P tại điểm A có hoành độ bằng 1. Khi đó tung độ yA = = 2 2 2Bài 3 (2 điểm):1/ Giải hệ phương trình2 x y 4 x 1 x 1 x 1 3 x y 3 3 x y 3 3.(1) y 3 y 6Vậy hệ phương trình có nghiệm duy nhất (-1; -6)2/ Giải phương trình x4 + x2 – 6 = 0 (1) 2Đặt x = t (t 0)Phương trình (1) trở thành: t2 + t – 6 = 0 (2)Ta có = 12 – 4.1.(-6) = 25 1 25 1 25Phương trình (2) có hai nghiệm t1 = = 2 (nhận) ; t2 = = -3 (loại) 2.1 2.1Với t = t1 = 2 => x2 = 2 x = 2Vậy phươn ...
Tìm kiếm theo từ khóa liên quan:
Đề ôn thi môn toán vào lớp 10 Đề thi vào lớp 10 môn toán Tuyển sinh vào lớp 10 môn toán Đề thi tuyển sinh vào lớp 10 Đề thi toán vào lớp 10 Đề thi vào lớp 10Tài liệu liên quan:
-
Đề thi tuyển sinh vào lớp 10 môn Hóa học (chuyên) năm 2022-2023 - Trường THPT chuyên Khoa học Huế
2 trang 136 0 0 -
Bộ đề thi vào lớp 10 môn Toán các tỉnh năm học 2023-2024
288 trang 111 0 0 -
10 trang 99 0 0
-
Đề thi vào lớp 10 chuyên Tiếng Anh năm 2019-2020 có đáp án - Trường THPT chuyên Thái Bình
10 trang 97 0 0 -
Đề thi tuyển sinh vào lớp 10 môn Tiếng Anh năm 2022-2023 có đáp án - Sở GD&ĐT Vĩnh Long
4 trang 87 0 0 -
Đề thi tuyển sinh vào lớp 10 môn Vật lý năm 2023-2024 (chuyên) - Sở GD&ĐT Vĩnh Phúc
2 trang 82 0 0 -
Đề thi tuyển sinh vào lớp 10 môn Ngữ văn năm 2023-2024 - Sở GD&ĐT Phú Yên
2 trang 57 0 0 -
Đề thi tuyển sinh vào lớp 10 môn Vật lí năm 2023-2024 - Sở GD&ĐT Ninh Bình
2 trang 56 0 0 -
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2015-2016 - Sở GD&ĐT Hà Nam
5 trang 54 0 0 -
Đề thi tuyển sinh lớp 10 môn Toán (Chuyên) năm 2015-2016 - THPT Chuyên KHTN
2 trang 49 0 0