Dự báo bằng phân tích hồi quy - Phùng Thanh Bình
Số trang: 85
Loại file: pdf
Dung lượng: 1.60 MB
Lượt xem: 16
Lượt tải: 0
Xem trước 9 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Chương này giúp chúng ta hiểu được các vấn đề cơ bản nhất về phân tích hồi quy và các ứng dụng của phân tích hồi quy trong dự báo với các nội dung sau đây: Các vấn đề cơ bản về phân tích hồi quy, giải thích ý nghĩa thống kê của các kết quả hồi quy, thực hiện các kiểm định giả thiết quan trọng, giải thích ý nghĩa kinh tế của các kết quả hồi quy.
Nội dung trích xuất từ tài liệu:
Dự báo bằng phân tích hồi quy - Phùng Thanh Bình DỰ BÁO BẰNG PHÂN TÍCH HỒI QUY Phùng Thanh Bình ptbinh@ueh.edu.vn Chúng ta vừa khảo sát một số mô hình dự báo giản đơn thuộc nhóm các mô hình dự báo chuỗi thời gian. Như chúng tôi đã đề cập ở chương 1, mô hình dự báo chuỗi thời gian sẽ giúp dự báo các giá trị tương lai về một đối tượng dự báo nào đó trên nền tảng xu hướng vận động của chính chuỗi dữ liệu đó trong quá khứ và hiện tại. Tuy nhiên, các biến kinh tế thường có các mối quan hệ với nhau, và dựa trên các mối quan hệ đó mà chúng ta có thể suy luận được hành vi của một biến số nào đó khi đã có thông tin từ các biến số khác có liên quan. Chẳng hạn, các nhà hoạch định chính sách vĩ mô có thể dự báo được tốc độ tăng trưởng kinh tế trên cơ sở dự đoán được các thông tin tương lai về cung tiền, lãi suất, hay chi tiêu công. Hoặc các nhà nghiên cứu có thể dự đoán được mức độ chi tiêu của dân cư cho một nhóm hàng hóa nào đó trên cơ sở dự đoán xu hướng gia tăng trong thu nhập và trình độ học vấn. Hoặc giám đốc kinh doanh của một doanh nghiệp có thể dự đoán được doanh số trong tương lai trên cơ sở dự trù các khoản chi tiêu cho quảng cáo và chi tiêu cho nghiên cứu thị trường. Để có thể làm được như vậy, các phương pháp phân tích hồi quy trở thành một trong những công cụ vô cùng hữu ích. Ngoài ra, phân tích hồi quy còn giúp những người nghiên cứu kiểm chứng nhiều giả thiết kinh tế quan trọng nhằm có thêm thông tin chắc chắn cho việc ra quyết định về chính sách hay giải pháp nào đó. Hơn nữa, chúng ta sẽ tiếp tục tìm hiểu một số mô hình dự báo chuỗi thời gian phức tạp ở các chương sau, và các mô hình đó sẽ không thể nào thực hiện được nếu người phân tích không được trang bị một nền tảng tương đối về phân tích hồi quy.MỤC TIÊU HỌC TẬP Chương này giúp chúng ta hiểu được các vấn đề cơ bản nhất về phân tích hồi quy và các ứng dụng của phân tích hồi quy trong dự báo với các nội dung sau đây: Các vấn đề cơ bản về phân tích hồi quy Giải thích ý nghĩa thống kê của các kết quả hồi quy Thực hiện các kiểm định giả thiết quan trọng Giải thích ý nghĩa kinh tế của các kết quả hồi quy Nhận biết và khắc phục một số vấn đề thường gặp trong phân tích hồi quy Một số ứng dụng của phân tích hồi quy trong việc ra quyết định về chính sách và dự báo 1MÔ HÌNH HỒI QUY ĐƠN MỤC ĐÍCH CỦA PHÂN TÍCH HỒI QUY Theo Gujarati (2003), phân tích hồi quy có thể giúp người phân tích: Ước lượng giá trị trung bình của biến phụ thuộc khi cho trước giá trị một hoặc các biến giải thích. Kiểm định các giả thiết về bản chất của sự phụ thuộc giữa biến độc lập và biến phụ thuộc. Dự báo giá trị trung bình của biến phụ thuộc khi cho trước các giá trị của các biến giải thích. Dự báo tác động biên hoặc độ co giãn của một biến độc lập lên biến phụ thuộc thong qua hệ số hồi quy. MÔ HÌNH HỒI QUY TUYẾN TÍNH CỔ ĐIỂN Mô hình hồi quy tuyến tính cổ điển là một cách xem xét bản chất và hình thức của mối quan hệ giữa hai hay nhiều biến số. Trong phần này, chúng ta chỉ tập trung xem xét trường hợp mô hình hai biến. Trong đó Y là biến phụ thuộc và X là biến độc lập (hay còn gọi là biến giải thích). Như vậy, chúng ta muốn giải thích/dự báo giá trị của Y theo các giá trị khác nhau của X. Giả sử, X và Y có mối quan hệ tuyến tính như sau: E(Yt) = 1 + 2Xt (7.1) Trong đó, E(Yt) là giá trị trung bình có điều kiện của Yt theo Xt, và 1, 2 là các tham số chưa biết của tổng thể (t ký hiệu theo thông lệ dữ liệu chuỗi thời gian cho quan sát vào thời điểm t của biến quan sát). Phương trình (7.1) được gọi là phương trình hồi quy tổng thể. Giá trị thực Yt sẽ không phải luôn luôn bằng giá trị kỳ vọng E(Yt), vì vậy Yt có thể được thể hiện như sau: Yt = E(Yt) + ut Yt = 1 + 2Xt + ut (7.2) Trong đó, ut được gọi là hạng nhiễu ngẫu nhiên. Và ut luôn tồn tại do các nguyên nhân như bỏ sót biết giải thích, sai dạng mô hình do bỏ qua các tác động trễ, sai dạng hàm, lỗi đo lường, hoặc do đơn giản hóa mô hình bằng cách tổng hợp một số biến khác nhau thành một biến giải thích duy nhất. 2PHƯƠNG PHÁP BÌNH PHƯƠ ...
Nội dung trích xuất từ tài liệu:
Dự báo bằng phân tích hồi quy - Phùng Thanh Bình DỰ BÁO BẰNG PHÂN TÍCH HỒI QUY Phùng Thanh Bình ptbinh@ueh.edu.vn Chúng ta vừa khảo sát một số mô hình dự báo giản đơn thuộc nhóm các mô hình dự báo chuỗi thời gian. Như chúng tôi đã đề cập ở chương 1, mô hình dự báo chuỗi thời gian sẽ giúp dự báo các giá trị tương lai về một đối tượng dự báo nào đó trên nền tảng xu hướng vận động của chính chuỗi dữ liệu đó trong quá khứ và hiện tại. Tuy nhiên, các biến kinh tế thường có các mối quan hệ với nhau, và dựa trên các mối quan hệ đó mà chúng ta có thể suy luận được hành vi của một biến số nào đó khi đã có thông tin từ các biến số khác có liên quan. Chẳng hạn, các nhà hoạch định chính sách vĩ mô có thể dự báo được tốc độ tăng trưởng kinh tế trên cơ sở dự đoán được các thông tin tương lai về cung tiền, lãi suất, hay chi tiêu công. Hoặc các nhà nghiên cứu có thể dự đoán được mức độ chi tiêu của dân cư cho một nhóm hàng hóa nào đó trên cơ sở dự đoán xu hướng gia tăng trong thu nhập và trình độ học vấn. Hoặc giám đốc kinh doanh của một doanh nghiệp có thể dự đoán được doanh số trong tương lai trên cơ sở dự trù các khoản chi tiêu cho quảng cáo và chi tiêu cho nghiên cứu thị trường. Để có thể làm được như vậy, các phương pháp phân tích hồi quy trở thành một trong những công cụ vô cùng hữu ích. Ngoài ra, phân tích hồi quy còn giúp những người nghiên cứu kiểm chứng nhiều giả thiết kinh tế quan trọng nhằm có thêm thông tin chắc chắn cho việc ra quyết định về chính sách hay giải pháp nào đó. Hơn nữa, chúng ta sẽ tiếp tục tìm hiểu một số mô hình dự báo chuỗi thời gian phức tạp ở các chương sau, và các mô hình đó sẽ không thể nào thực hiện được nếu người phân tích không được trang bị một nền tảng tương đối về phân tích hồi quy.MỤC TIÊU HỌC TẬP Chương này giúp chúng ta hiểu được các vấn đề cơ bản nhất về phân tích hồi quy và các ứng dụng của phân tích hồi quy trong dự báo với các nội dung sau đây: Các vấn đề cơ bản về phân tích hồi quy Giải thích ý nghĩa thống kê của các kết quả hồi quy Thực hiện các kiểm định giả thiết quan trọng Giải thích ý nghĩa kinh tế của các kết quả hồi quy Nhận biết và khắc phục một số vấn đề thường gặp trong phân tích hồi quy Một số ứng dụng của phân tích hồi quy trong việc ra quyết định về chính sách và dự báo 1MÔ HÌNH HỒI QUY ĐƠN MỤC ĐÍCH CỦA PHÂN TÍCH HỒI QUY Theo Gujarati (2003), phân tích hồi quy có thể giúp người phân tích: Ước lượng giá trị trung bình của biến phụ thuộc khi cho trước giá trị một hoặc các biến giải thích. Kiểm định các giả thiết về bản chất của sự phụ thuộc giữa biến độc lập và biến phụ thuộc. Dự báo giá trị trung bình của biến phụ thuộc khi cho trước các giá trị của các biến giải thích. Dự báo tác động biên hoặc độ co giãn của một biến độc lập lên biến phụ thuộc thong qua hệ số hồi quy. MÔ HÌNH HỒI QUY TUYẾN TÍNH CỔ ĐIỂN Mô hình hồi quy tuyến tính cổ điển là một cách xem xét bản chất và hình thức của mối quan hệ giữa hai hay nhiều biến số. Trong phần này, chúng ta chỉ tập trung xem xét trường hợp mô hình hai biến. Trong đó Y là biến phụ thuộc và X là biến độc lập (hay còn gọi là biến giải thích). Như vậy, chúng ta muốn giải thích/dự báo giá trị của Y theo các giá trị khác nhau của X. Giả sử, X và Y có mối quan hệ tuyến tính như sau: E(Yt) = 1 + 2Xt (7.1) Trong đó, E(Yt) là giá trị trung bình có điều kiện của Yt theo Xt, và 1, 2 là các tham số chưa biết của tổng thể (t ký hiệu theo thông lệ dữ liệu chuỗi thời gian cho quan sát vào thời điểm t của biến quan sát). Phương trình (7.1) được gọi là phương trình hồi quy tổng thể. Giá trị thực Yt sẽ không phải luôn luôn bằng giá trị kỳ vọng E(Yt), vì vậy Yt có thể được thể hiện như sau: Yt = E(Yt) + ut Yt = 1 + 2Xt + ut (7.2) Trong đó, ut được gọi là hạng nhiễu ngẫu nhiên. Và ut luôn tồn tại do các nguyên nhân như bỏ sót biết giải thích, sai dạng mô hình do bỏ qua các tác động trễ, sai dạng hàm, lỗi đo lường, hoặc do đơn giản hóa mô hình bằng cách tổng hợp một số biến khác nhau thành một biến giải thích duy nhất. 2PHƯƠNG PHÁP BÌNH PHƯƠ ...
Tìm kiếm theo từ khóa liên quan:
Phương phương pháp hồi quy Đường hồi quy Quan hệ giữa các biến Dự báo kinh doanh Tài liệu dự báo kinh doanh Bài giảng dự báo kinh doanhGợi ý tài liệu liên quan:
-
Báo cáo xác suất thống kê - Nguyễn Phước Lộc
18 trang 30 0 0 -
Bài giảng Tin học trong quản lý chất lượng: Phần 3 - Vũ Hồng Sơn
36 trang 27 0 0 -
Bài giảng Hồi quy và tương quan
8 trang 21 0 0 -
Bài giảng Dự báo kinh doanh - Chương 1
33 trang 21 0 0 -
Phân tích dự báo kinh doanh tiền tệ
20 trang 20 0 0 -
Bài giảng Dự báo kinh doanh - Chương 6
23 trang 20 0 0 -
Giáo trình Các phân tích định lượng trong quản trị - PGS.TS. Bùi Tường Trí
21 trang 19 0 0 -
Kỹ thuật phân tích dự báo trong kinh doanh ngoại tệ trực tuyến
18 trang 18 0 0 -
Bài giảng Chương 8: Tương quan và hồi quy mẫu
8 trang 18 0 0 -
82 trang 17 0 0