Giải bài tập Đại số tuyến tính
Thông tin tài liệu:
Nội dung trích xuất từ tài liệu:
Giải bài tập Đại số tuyến tính HƯỚNG DẪN ÔN THI MÔN HỌC ĐẠI SỐ TUYẾN TÍNH I. NỘI DUNG KIỂM TRA ĐÁNH GIÁ 1. Mục tiêu Mục tiêu của kỳ thi kết thúc môn học là kiểm tra đánh giá việc tiếp thu những khái niệm cơ bản của đại số tuyến tính, năng lực tư duy phân tích, tổng hợp và vận dụng kiến thức thể hiện qua việc trình bày logic chặt chẽ và chính xác các vấn đề liên quan bằng ngôn ngữ của môn học. 2. Nội dung kiểm tra đánh giá Toàn bộ nội dung đã giảng dạy của môn học, bao gồm hai phần lý thuyết và bài T tập. Trọng tâm là các kiến thức về không gian véc tơ, không gian con, hạng của hệ véc tơ, hạng ma trận, chiều của không gian véc tơ, cấu trúc nghiệm của hệ .NE phương đại số tuyến tính cũng như cách giải hệ phương trình đại số tuyến tính và cách tính định thức; không gian Euclid, hệ véc tơ trực giao, phương pháp trực giao hóa, dạng song tuyến tính và dạng toàn phương. II. CẤU TRÚC ĐỀ THI VÀ ĐIỀU KIỆN DỰ THI THS Đề thi sẽ gồm có 2 câu hỏi lý thuyết và 3 câu hỏi bài tập. Với tỷ trọng: 4 điểm cho phần lý thuyết và 6 điểm cho phần bài tập. Thang điểm sẽ được tính từ mức ¼ điểm cho mỗi bước suy luận logic cơ bản. Vì vậy khi trình bày bài làm người làm bài cần trình bày lập luận khúc chiết đầy đủ. A Người dự thi sẽ phải chấp hành nghiêm túc các quy định, quy chế về các kỳ thi hết môn học của Nhà trường, ĐHQGHN và Bộ GD&ĐT. Đặc biệt lưu ý Không được TM sử dụng tài liệu, máy tính và điện thoại di động. VIE Bài tập chương Kiến thức chuẩn bị 1. Chứng minh công thức De Morgan dạng tổng quát a. A \ ∪i∈I Ai = ∩i∈I (A \ Ai) Theo định nghĩa hai tập hợp bằng nhau, để chứng minh X = Y, ta phải chứng minh: X ⊂ Y và Y ⊂ X. Nghĩa là: ∀x ∈ X → x ∈ Y và ngược lại ∀y ∈ Y → y ∈ X. () ∀ x ∈ A \ ∪i∈I Ai → x ∈ A và x ∉ ∪i∈I Ai → x ∈ A và x ∉ Ai ∀i ∈ I → x ∈ A \ Ai ∀i ∈ I → x ∈ ∩i∈I (A\Ai) . Vậy A \ ∪i∈I Ai ⊂ ∩i∈I (A \ Ai). (1) () ∀ x ∈ ∩i∈I (A \ Ai) → x ∈ A \ Ai ∀i ∈ I → x ∈ A và x ∉ Ai ∀i ∈ I → x ∈ A và x ∉ ∪i∈I Ai → ∀ x ∈ A \ ∪i∈I Ai . Vậy ∩i∈I (A \ Ai) ⊂ A \ ∪i∈I Ai . (2) Từ (1) và (2) suy ra đpcm. b. A \ ∩i∈I Ai = ∪i∈I (A \ Ai) () ∀ x ∈ A \ ∩i∈I Ai → x ∈ A và x ∉ ∩i∈I Ai → x ∈ A và ∃ j ∈ I : x ∉ Aj → ∃ j ∈ I : x ∈ A \ Aj → x ∈ ∪i∈I (A\Ai) . Vậy A \ ∩i∈I Ai ⊂ ∪i∈I (A\Ai). (1) () ∀ x ∈ ∪i∈I (A\Ai) → ∃ j ∈ I : x ∈ A \ Aj → x ∈ A và ∃ j ∈ I : x ∉ Aj → x∈A và x ∉ ∩i∈I Ai → x ∈ A \ ∩i∈I Ai . Vậy ∪i∈I (A\Ai) ⊂ A \ ∩i∈I Ai . (2) Từ (1) và (2) suy ra đpcm. 2. Chứng minh các mệnh đề tập hợp a. (A \ B) ∪ (B \ A) = Ø A = B (A \ B) ∪ (B \ A) = Ø → A \ B = ∅ và B \ A = ∅ → A ⊂ B và B ⊂ A → A = B Ngược lại, nếu A = B → A \ B = ∅ và B \ A = ∅ → (A \ B) ∪ (B \ A) = Ø. b. A = (A \ B) ∪ (A ∩ B) (A \ B) ∪ (A ∩ B) = ( A \ (A ∩ B) ) ∪ (A ∩ B) = A. c. (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B) De Morgan (A \ B) ∪ (B \ A) = ((A ∪ B) \ B) ∪ ((B ∪ A) \ A)) = (A ∪ B) \ (A ∩ B) d. A ∩ (B \ C) = (A ∩ B) \ (A ∩ C) De Morgan (A ∩ B) \ (A ∩ C) = ((A ∩ B) \ A) ∪ ((A ∩ B) \ C) = Ø ∪ ((A ∩ B) \ C) = (A ∩ B) \ C = A ∩ (B \ C) . e. A ∪ (B \ A) = A ∪ B 1 x ∈A ∪ (B \ A) ↔ x ∈A hoặc (x ∈ B và x ∉ A) ↔ x ∈ A hoặc x ∈ B ↔ x ∈ A∪B . f. A \ (A \ B) = A ∩ B x ∈ A \ (A \ B) ↔ x ∈ A và x ∉ (A \ B) ↔ x ∈ A và x ∈ B ↔ x ∈ A ∩ B . 3. Chứng minh a. (A x B) ∩ (B x A) ≠ Ø ↔ A ∩ B ≠ Ø (A x B) ∩ (B x A) ≠ Ø ↔ ∃ x ∈ A, ∃ y ∈ B: (x, y) ∈ A x B và (x, y) ∈ B x A. (x, y) ∈ B x A → x ∈ B, y ∈ A → x ∈ A ∩ B , y ∈ A ∩ B hay A ∩ B ≠ ∅. b. (A x C) ∩ (B x D) = (A ∩ B) x (C ∩ D) (x, y) ∈ (A x C) ∩ (B x D) ↔ x ∈ A và x ∈ B đồng thời y ∈ C và y ∈ D ↔ x ∈(A ∩ B) , y ∈(C ∩ D) hay (x, y) ∈(A ∩ B) x (C ∩ D) đpcm. T .NE 4. Với ánh xạ f : X → Y và A, B ⊂ X. Chứng minh : a. f (A ∪ B) = f (A) ∪ f (B) y ∈ f (A ∪ B) → ∃ x ∈ (A ∪ B) : f (x) = y . Mà x ∈ (A ∪ B) → x ∈ A hoặc x ∈ B kéo theo f (x) ∈ f (A) hoặc f (x) ∈ f (B) hay y ∈ f (A) ∪ f (B) . Cm tương tự cho chiều THS ngược lại. b. f (A ∩ B) ⊂ f (A) ∩ f (B) y ∈ f (A ∩ B) → ∃ x ∈ (A ∩ B) : f (x) = y . Mà x ∈ (A ∩ B) → x ∈ A và x ∈ B kéo theo f (x) ∈ f (A) và f (x) ∈ f (B) hay y ∈ f (A) ∩ f (B) . Cm tương tự cho chiều ngược lại. A c. f (A \ B) ⊃ f (A) \ f (B) TM y ∈ f (A \ B) → ∃ x ∈ (A \ B) : f (x) = y . Mà x ∈ (A \ B) → x ∈ A và x ∉ B kéo theo f (x) ∈ f (A) và f (x) ∉ f (B) hay y ∈ f ( ...
Tìm kiếm theo từ khóa liên quan:
Giải bài tập Đại số tuyến tính Đại số tuyến tính Trắc nghiệm Đại số tuyến tính Bài tập Đại số tuyến tính Lý thuyết môn Đại số tuyến tínhGợi ý tài liệu liên quan:
-
Cách tính nhanh giá trị riêng của ma trận vuông cấp 2 và cấp 3
4 trang 274 0 0 -
1 trang 240 0 0
-
Hướng dẫn giải bài tập Đại số tuyến tính: Phần 1
106 trang 231 0 0 -
Giáo trình Phương pháp tính: Phần 2
204 trang 206 0 0 -
Đại số tuyến tính - Bài tập chương II
5 trang 93 0 0 -
Giáo trình Toán kinh tế: Phần 2
60 trang 68 0 0 -
Giáo trình Đại số tuyến tính (Giáo trình đào tạo từ xa): Phần 1
37 trang 65 0 0 -
Đại số tuyến tính và hình học giải tích - Bài tập tuyển chọn (Tái bản lần thứ 3): Phần 2
234 trang 64 0 0 -
Giáo trình Toán kỹ thuật: Phần 2 - Tô Bá Đức (chủ biên)
116 trang 63 0 0 -
Bài giảng Đại số tuyến tính - Chương 3: Định thức
39 trang 59 0 0 -
Machine Learning cơ bản: Phần 1 - Vũ Hữu Tiệp
232 trang 56 0 0 -
Lý thuyết và bài tập Đại số tuyến tính: Phần 2
136 trang 56 0 0 -
Bài giảng Đại số tuyến tính và Hình học giải tích - Hy Đức Mạnh
139 trang 56 0 0 -
Tuyển tập bài tập đại số tuyến tính và hình học giải tích (in lần thứ 3): Phần 1
146 trang 53 0 0 -
22 trang 47 0 0
-
247 trang 43 0 0
-
Ứng dụng phép tính Tenxơ trong cơ học và vật lý: Phần 1
247 trang 42 0 0 -
Đề thi kết thúc học phần Đại số tuyến tính năm 2017 - Học viện Nông nghiệp Việt Nam (Đề số 05)
1 trang 42 0 0 -
Tuyển tập bài tập hình học giải tích và đại số: Phần 2
92 trang 40 0 0 -
Bài tập Chương 0, 1, 2, 3 môn Đại số tuyến tính - Nguyễn Hữu Việt Hưng
150 trang 40 0 0