Danh mục

khí quyển sao p3

Số trang: 3      Loại file: pdf      Dung lượng: 217.92 KB      Lượt xem: 8      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Sớm hay muộn (đặc biệt trong chương kế tiếp) trong việc nghiên cứu bầu khí quyển sao, chúng tôi đãcần các chức năng không thể thiếu theo cấp số nhân. Chương này ngắn gọn có chứa gì về saobầu khí quyển hoặc thậm chí thiên văn học, nhưng nó chỉ mô tả nhiều như chúng tôi cần phải biết vềchức năng tách rời theo cấp số nhân. Nó không phải là dự định như là một trình bày toàn diện của tất cả mọi thứ có thểđược viết về chức năng....
Nội dung trích xuất từ tài liệu:
khí quyển sao p3 1 CHAPTER 3 THE EXPONENTIAL INTEGRAL FUNCTIONSooner or later (in particular in the next chapter) in the study of stellar atmospheres, we haveneed of the exponential integral function. This brief chapter contains nothing about stellaratmospheres or even astronomy, but it describes just as much as we need to know about theexponential integral function. It is not intended as a thorough exposition of everything that couldbe written about the function.The exponential integral function of order n, written as a function of a variable a, is defined as ∞ E n ( a ) = ∫ x −n e −ax dx. 3.1 1I shall restrict myself to cases where n is a non-negative integer and a is a non-negative realvariable. For stellar atmosphere theory in the next chapter we shall have need of n up to andincluding 3.Let us start by seeing what the values of the functions are when a = 0. We have ∞ E n (0) = ∫ x −n dx 3.2 1and this is infinite for n = 0 and for n = 1. For larger n it is 1/(n − 1).Thus E 0 ( 0) = ∞ , E 1 ( 0) = ∞ , E 2 ( 0) = 1, E 3 ( 0) = 2 , E 4 ( 0) = 1 , etc. 1 3Thereafter the functions (of whatever order) decrease monotonically as a increases, approachingzero asymptotically for large a.The function E 0 ( a ) is easy to evaluate. It is ∞ e −a ∫ e dx = − ax E 0 (a) = 3.3 . a 1The evaluation of the exponential integral function for n > 0 is less easy but it can be done bynumerical (e.g. Simpson) integration. The upper limit of the integral in equation 3.1 is infinite,but this difficulty can be overcome by means of the substitution y = 1/x, from which the equationbecomes 1 ∫y n−2 e − a / y dy. E n (0) = 3.4 0 2Since both limits are finite, this can now in principle integrated numerically in a straightforwardway, for example by Simpsons rule or similar algorithm, except that, at the lower limit, a/y isinfinite and it is necessary first to determine the limit of the integrand as y → 0, which is zero.There is, however, a way of evaluating the exponential integral function for n ≥ 2 without thenecessity of numerical integration. Consider, for example, ∞ E n +1 (a ) = ∫ x − ( n +1) e − ax dx. 3.5 1If this is integrated (very carefully!) by parts, we arrive at [ ] 1 −a E n +1 (a ) = e −aE n (a ) . 3.6 nThus from this recurrence relation, once we have evaluated E1 ( a ), we can evaluate E 2 ( a ) andhence E 3 ( a ) and so on.The recurrence relation 3.6, however, holds only for n ≥ 1 (as will become apparent during thecareful partial integration), so there is no getting around the numerical integration for n = 1.Furthermore, for small values of a the functions for n = 0 or 1 become very large, becominginfinite as a → 0, which makes them very sensitive when trying to compute the next function up.Thus for small a or for constructing a table it may in the end be less trouble to take the bull bythe horns and integrate them all numerically.It will afford good programming practice to prepare a table of E n ( a ) for a = 0 to 2, in steps of0.01, for n = 0, 1, 2, 3. The table should ideally have five columns, the first being the 201 valuesof a, and the remaining four being E n ( a ), n = 1 to 4. A graph of these func ...

Tài liệu được xem nhiều: