Danh mục

Kì thi thử đại học năm học 2010 -2011 môn toán - trường DDHSP Hà Nội

Số trang: 5      Loại file: doc      Dung lượng: 377.00 KB      Lượt xem: 7      Lượt tải: 0    
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu kì thi thử đại học năm học 2010 -2011 môn toán - trường ddhsp hà nội, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Kì thi thử đại học năm học 2010 -2011 môn toán - trường DDHSP Hà Nội ĐỀ THI THỬ ĐẠI HỌC – CAO ĐẲNG 2011ĐẠI HỌC SƯ PHẠM HÀ NỘI MÔN: TOÁN- KHỐI A KHOA TOÁN-TIN Thời gian làm bài: 180 phút ( không kể thời gian giao đề ) ----------------------------------------------------------------------------------------------------------------------------------------------------------A. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm ) 2x −1Câu I: (2,0 điểm) Cho hàm số: y = (C). x −1 1. Khảo sát sự biến thiên và vẽ đồ thị (C). 2. Gọi I là giao điểm của hai tiệm cận, M là một điểm bất kì trên (C), tiếp tuyến của (C) t ại M c ắt các ti ệm cận tại A, B. Chứng minh rằng diện tích tam giác IAB không đổi khi M thay đổi trên (C).Câu II: (2,0 điểm) sin 3 x.sin 3 x + cos 3 x.cos 3 x 1 =− 1. Giải phương trình tan  x − π  .tan  x + π  8  ÷  ÷  6  3 2. Giải phương trình 1 + 1 − x  ( 1 + x ) − ( 1 − x )  = 2 + 1 − x . 3 3 2 2     1 ( ) ∫Câu III. (1,0 điểm) Tính tích phân I = x ln x + x + 1 dx . 2 0 a3Câu IV. (1,0 điểm) Cho hình hộp đứng ABCD.A’B’C’D’ có AB = AD = a , AA = , góc BAD bằng 600 . 2Gọi M, N lần lượt là trung điểm của cạnh A’D’ và A’B’. Chứng minh AC’ vuông góc với m ặt phẳng (BDMN) vàtính thể tích khối đa diện AA’BDMN theo a .Câu V. (1,0 điểm) Chứng minh rằng với mọi số thực dương a, b, c thỏa mãn a 2 + b 2 + c 2 = 1 , ta có:a 5 − 2a3 + a b5 − 2b3 + b c 5 − 2c3 + c 2 3 + + ≤ . b2 + c 2 c2 + a2 a 2 + b2 3B. PHẦN RIÊNG (3,0 ĐIỂM):Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)I. Theo chương trình ChuẩnCâu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diện tích bằng 12, tâm I là giao điểm của hai đường thẳng: d1: x – y – 3 = 0, d2: x + y – 6 = 0. Trung điểm một cạnh là giao điểm của d1 và tia Ox. Tìm tọa độ các đỉnh của hình chữ nhật. x − 14 y z + 5 == 2. Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;1;1) và đường thẳng d: . Viết −2 4 1 phương trình mặt cầu (S) tâm I và cắt d tại hai điểm A, B sao cho độ dài đo ạn th ẳng AB b ằng 16. n  1Câu VII.a (1,0 điểm) Tìm hệ số chứa x trong khai triển:  x + ÷ , biết n là số nguyên dương thỏa mãn: 2  24 x  2n +1 n 6560 2 2 1 23 2 2Cn + Cn + Cn + ... + Cn = 0 . n +1 n +1 2 3II. Theo chương trình Nâng caoCâu VI.b (2,0 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông có đỉnh là (-4; 8) và một đường chéo có ph ương trình 7x – y + ...

Tài liệu được xem nhiều: