Danh mục

Luận văn Thạc sĩ Khoa học: Phương trình tích phân kỳ dị với dịch chuyển và phản xạ trên trục thực

Số trang: 65      Loại file: pdf      Dung lượng: 356.15 KB      Lượt xem: 9      Lượt tải: 0    
tailieu_vip

Phí tải xuống: 65,000 VND Tải xuống file đầy đủ (65 trang) 0
Xem trước 7 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Mục tiêu của luận văn tập trung nghiên cứu lớp các phương trình tích phân kỳ dị với dịch chuyển và phản xạ trên trục thực dạng (2.11). Bằng phương pháp sử dụng bài toán biên Riemann và của hệ thống các phương trình đại số tuyến tính, tác giả đã đưa ra một phương pháp đại số để thu được các nghiệm của phương trình (2.11) trong các trường hợp khác nhau.
Nội dung trích xuất từ tài liệu:
Luận văn Thạc sĩ Khoa học: Phương trình tích phân kỳ dị với dịch chuyển và phản xạ trên trục thực ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THỊ GIANG PHƯƠNG TRÌNH TÍCH PHÂN KỲ DỊ VỚI DỊCH CHUYỂN VÀ PHẢN XẠ TRÊN TRỤC THỰC LUẬN VĂN THẠC SỸ TOÁN HỌC HÀ NỘI, NĂM 2010 1 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THỊ GIANG PHƯƠNG TRÌNH TÍCH PHÂN KỲ DỊ VỚI DỊCH CHUYỂN VÀ PHẢN XẠ TRÊN TRỤC THỰC Chuyên ngành : GIẢI TÍCH Mã số : 60 46 01 LUẬN VĂN THẠC SỸ TOÁN HỌC Người hướng dẫn khoa học: GS.TSKH. NGUYỄN VĂN MẬU HÀ NỘI - NĂM 2010 Mục lục Mở đầu 5 1 Công thức Sokhotski - Plemelij và bài toán biên Riemann 8 1.1 Công thức Sokhotski - Plemelij . . . . . . . . . . . . . . . . 8 1.1.1 Công thức Sokhotski - Plemelij . . . . . . . . . . . . 8 1.1.2 Công thức Sokhotski - Plemelij trên trục thực . . . . 10 1.2 Bài toán biên Riemann . . . . . . . . . . . . . . . . . . . . 10 1.2.1 Bài toán bước nhảy . . . . . . . . . . . . . . . . . . 11 1.2.2 Bài toán thuần nhất . . . . . . . . . . . . . . . . . . 11 1.2.3 Hàm chính tắc của bài toán thuần nhất . . . . . . . 14 1.2.4 Bài toán không thuần nhất . . . . . . . . . . . . . . 15 1.2.5 Bài toán biên Riemann trên nửa mặt phẳng . . . . . 17 2 Phương trình tích phân kỳ dị với phép phản xạ 23 2.1 Phương trình tích phân kỳ dị dạng đặc trưng . . . . . . . . 23 2.1.1 Phương trình đặc trưng . . . . . . . . . . . . . . . . 23 2.1.2 Chuyển phương trình đặc trưng về bài toán biên Riemann . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Phương trình tích phân kỳ dị với phép phản xạ . . . . . . . 27 2.2.1 Tính giải được của phương trình với phép phản xạ . 29 2.2.2 Trường hợp A1 (t)C1 (t) − A2 (t)C2 (t) 6= 0, ∀t ∈ R . . 30 2.2.3 Trường hợp A1 (t)C1 (t) − A2 (t)C2 (t) ≡ 0. . . . . . . 33 2.3 Ví dụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3 Phương trình tích phân kỳ dị với phép tịnh tiến trong lớp hàm tuần hoàn 50 3 3.1 Toán tử sinh bởi nhóm hữu hạn các đối hợp . . . . . . . . . 50 3.2 Phương trình tích phân kỳ dị với phép tịnh tiến . . . . . . . 53 3.3 Phương trình tích phân kỳ dị với phép tịnh tiến và phản xạ 56 3.4 Ví dụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Kết luận 64 Tài liệu tham khảo 65 4 Mở đầu Lý thuyết các toán tử tích phân kỳ dị và các bài toán biên Riemann của hàm giải tích biến phức đã được xây dựng và phát triển rất mạnh mẽ trong nửa thế kỷ, từ những năm 1920 đến 1970. Các kết quả này gắn với tên tuổi nhiều nhà toán học nổi tiếng như Noether, Muskhelishvili, Gakhov, Vekua, ... Trong các giáo trình lý thuyết hàm biến phức ở đại học, chúng ta đã biết đến tích phân Cauchy, tích phân dạng Cauchy và tích phân với nghĩa giá trị chính theo Cauchy: Giả sử Γ là chu tuyến đóng và trơn trong mặt phẳng phức, chia mặt phẳng phức thành miền trong D+ và miền ngoài D− . Khi f (z) là hàm giải tích trong D+ và liên tục trong D+ ∪ Γ, thì theo công thức tích phân Cauchy của lý thuyết hàm biến phức, ta có f (z), khi z ∈ D+  1 f (τ ) Z dτ = (1) 2πi τ − z 0, khi z ∈ D− . Γ Nếu hàm f (z) giải tích trong D− và liên tục trong D− ∪ Γ, thì f (∞), khi z ∈ D+  1 f (τ ) Z dτ = (2) 2πi τ − z −f (z) + f (∞), khi z ∈ D− . Γ Công thức tích phân Cauchy cho ta lời giải của bài toán biên trong lớp hàm giải tích. Tích phân ở vế trái của công thức (1) và (2) chính là tích phân Cauchy. Giả sử ϕ(τ ) là hàm liên tục trên chu tuyến Γ. Khi đó, tích phân 1 ϕ(τ ) Z Φ(z) = dτ 2πi τ − z Γ 5 được xây dựng cùng theo phương pháp như đối với tích phân Cauchy, được gọi là tích phân dạng Cauchy. Hàm số ϕ(τ ) này được gọi là hàm mật độ 1 và hàm là nhân Cauchy. τ −z Xét tích phân đường kỳ dị ϕ(τ ) Z dτ. (3) τ −t Γ Giả sử γ là đường tròn: γ = γ(t, ε) = {z ∈ C : |z − t| = ε} trong đó ε là số dương đủ bé sao cho γ chỉ cắt Γ tại hai điểm. Phần đường cong Γ nằm ngoài hình tròn {z ∈ C : |z − t| ≤ ε} được ký hiệu là Γ(ε). R ϕ(τ ) Định nghĩa 0.1. Giới hạn của tích phân dτ khi ε → 0 được gọi Γ(ε) τ − t là giá trị chính của tích phân kỳ dị (3). Mục tiêu của luận văn tập trung nghiên cứu lớp các phương trình tích phân kỳ dị với dịch chuyển và phản xạ trên trục thực dạng (2.11). Bằng phương pháp sử dụng bài toán biên Riemann ...

Tài liệu được xem nhiều:

Gợi ý tài liệu liên quan: