Thông tin tài liệu:
Tài liệu Phương pháp tọa độ trong mặt phẳng - Phạm Văn Chúc là chuyên đề ôn tập toán học, giúp các bạn học sinh thử sức trước mùa thi tuyển sinh cao đẳng, đại học.
Nội dung trích xuất từ tài liệu:
Phương pháp tọa độ trong mặt phẳng - Phạm Văn ChúcTHỬ SỨC TRƯỚC MÙA THI 2013 GV: PHẠM VĂN CHÚC PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG KIẾN THỨC CƠ BẢN: 1/ tọa độ của vectơ và của điểm: a) Định nghĩa: b) Các phép toán: Cho : 1) ; 2) ) ; 3) k 4) 5) ; 6) cos(= Cho: A( Ghi nhớ: 1) M là trung điểm của đoạn thẳng AB 2) G là trọng tâm của tam giác ABC2/ Đường thẳng: a) Các định nghĩa: + là là một vectơ pháp tuyến của đường thẳng nếu và giá của vuông góc với + là một vectơ chỉ phương của đường thẳng , nếu và có gia song song hoặc trùng với + Cho đường thẳng . Gọi M là giao điểm của với trục Ox và tia Mt là tia của nằm phía trên trục Ox: Nếu ( Mt, Mx ) = thì tan gọi là hệ số góc của . b) Phương trình đường thẳng: + Phương trình tổng quát: Nếu đt đi qua điểm Mo (xo ; yo ) và một vectơ pháp tuyến = ( a, b) ( a2 +b2 thì đt có phương trình tổng quát là: a( x - xo) + b( y – y0 ) = 0 + Phương trình tham số: Nếu đt đi qua điểm Mo (xo ; yo ) và một vectơ chỉ phương = ( a, b) ( a2 +b2 thì đt có phương trình tham số là: (t + phương trình chính tắc: Nếu đt đi qua điểm Mo (xo ; yo ) và một vectơ chỉ phương = ( a, b) ( a thì đt có phương trình chính tắc là: + phương trình đường thẳng theo đoạn chắn: nếu đường thẳng cắt các trục Ox, Oy lần lượt tại các điểm A (a; 0), B(b;0) thì đường thẳng có phương trình: + Phương trình đường thẳng có hệ số góc cho trước: Nếu đường thẳng đi qua điểm Mo (xo;yo) và có hệ số góc k thì phương trình đường thẳng có phương trình là: y = k(x - xo ) + yo Chú ý: Phương trình: ax + by + c = 0 ( a2 + b2 là phương trình tổng quát của đường thẳng trong hệ Oxy. c) Vị trí tương đối của hai đường thẳng: Cho hai đường thẳng (( ( cắt ( (( (( Chú ý: Có thể sử dụng nghiệm của hệ gồm hai phương trình đường thẳng để xét vị trí tương đối của hai đường thẳng: + Hai đường thẳng cắt nhau khi và chỉ khi hệ có nghiệm duy nhất + Hai đường thẳng song song khi và chỉ khi hệ vô nghiệm + Hai đường thẳng trùng nhau khi và chỉ khi hệ có vô số nghiệm d) Khoảng cách và góc:THỬ SỨC TRƯỚC MÙA THI 2013 GV: PHẠM VĂN CHÚC + Khỏang cách từ điểm Mo (xo ; yo ) đến đường thẳng ax + by + c = 0 được xác định bởi: Mo + Vị trí hai điểm đối với một đường thẳng: Cho đường thẳng và hai điểm M(xM ; yM), N(xN; yN). 1) M và N nằm cùng phía với 2) M và N nằm khác phía đối với + Phương trình đường phân giác: Cho hai đường thẳng cắt nhau . Khi đó phương trình hai đường phân giác của các góc tạo bởi hai đường thẳng đó là:+ Góc của hai đường thẳng: Cho hai đường thẳng (Khi đó góc giữa ( được xác định: cos (3/ Đường tròn: a)Phương trình đường tròn: + Đường tròn tâm I(a,b), bán kính R có phương trình: + Phương trình: x2 + y2 +2ax +2by + c = 0, với a2 +b2 - c, là phương trình đường tròn tâm I( -a; -b) và bán kính R= b)Đường thẳng tiếp xúc đường tròn: + Tiếp tuyến của đường tròn tâm (I; R) tại điểm Mo (xo ; yo ) là đường thẳng đi qua Mo và vuông góc với đường thẳng IMo + Đường thẳng tiếp xúc đường tròn tâm (I;R) khi và chỉ khi: d (I; + Tiếp điểm của tiếp tuyến với đường tròn tâm (I;R) là hình chiếu vuông góc của tâm I trên . Ngoài ra, tọa độ tiếp điểm là nghiệm của hệ phương trình gồm phương trình đường tròn và phương trình tiếp tuyến.4/ Ba đường cônic: a)Các định nghĩa: + Elip: Cho hai điểm cố định F1 và F2, với F1.F2 = 2c (. Elip là tập hợp các điểm M sao cho MF1 + MF2 =2a, trong đó a là số cho trước lớn hơn c. Hai điểm F1 và F2 được gọi là các tiêu điểm và F1.F2 = 2c được gọi là tiêu cự. + Hypebol: Cho hai điểm cố định F1 và F2, với F1.F2 = 2c (. Hypebol là tập hợp các điểm M sao cho = 2a, trong đó a là số dương cho trước nhỏ hơn c. + Parabol: Cho một điểm F cố định và một đường thẳng cố định không đi qua F. Tập hợp các điểm M cách đều F và được gọi là parabol Điểm F được gọi là tiêu điểm, đường thẳng gọi là đường chuẩn, khoảng cách từ F đến gọi là tham số tiêu. + Đường cônic: Cho một điểm F cố định và một đường thẳng cố định không đi qua F. Tập hợp các điểm M sao cho tỉ số bằng một số dương e cho trước gọi là đường cônic. Điểm F gọi là tiêu điểm, đường thẳng gọi là đường chuẩn và e gọi là tâm sai của đường cônic • Elip là đường cônic có tâm sai eTHỬ SỨC TRƯỚC MÙA THI 2013 GV: PHẠM VĂN CHÚC • Hypebol là đường cônic có tâm sai e • Parabol là đường cônic có tâm sai e = 1 b) Phương trình chính tắc và các yếu tố liên quan: + Elip (E): = 1 (.Tiêu điểm F1 (-c ; 0) và F2 ( c ; 0). Đỉnh A1 (-a : 0), A2 (a ; 0), B1 ( 0; -b), B2 (0 ...