Tài liệu Chuyên đề phương trình lượng giác
Số trang: 11
Loại file: pdf
Dung lượng: 231.79 KB
Lượt xem: 7
Lượt tải: 0
Xem trước 2 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Tài liệu giảng dạy về toán đã được giảng dạy với mục đích cung cấp cho học sinh những kiến thức cơ bản nhất, có tính hệ thống liên quan tới toán học. Thông qua tài liệu này giúp các bạn hệ thống lại kiến thức. Chúc các bạn thành công
Nội dung trích xuất từ tài liệu:
Tài liệu Chuyên đề phương trình lượng giácwww.laisac.page.tl P Ư N T Ì HL Ợ GG Á PH Ơ G TR N LƯ N GI C HƯƠN RÌN ƯỢN IÁ K Ô GM UM C KH N MẪ MỰ HÔN Ẫ ỰC (khôngrõtácgiả) Tröôøng hôïp 1: TOÅNG HAI SOÁ KHOÂNG AÂM ⎧A ≥ 0 ∧ B ≥ 0 A Ù p duï n g Neá u ⎨ t hì A = B = 0 ⎩A + B = 0B aø i 1 G iaû i phöông trình: 4 cos2 x + 3tg 2 x − 4 3 cos x + 2 3tgx + 4 = 0 (*) T a coù : ( ) +( ) 2 2 (*) ⇔ 2 cos x − 3 3tgx + 1 =0 ⎧ 3 ⎪cos x = 2 ⎪ ⇔⎨ ⎪tgx = − 1 ⎪ 3 ⎩ π ⎧ ⎪ x = ± 6 + k2π, k ∈ ⎪ ⇔⎨ ⎪tgx = − 1 3 ⎪ ⎩ π ⇔x=− + k2π, k ∈ 6B aø i 2 G iaû i phöông trình: 8 cos 4x.cos2 2x + 1 − cos 3x + 1 = 0 ( *) T a coù : ( *) ⇔ 4 cos 4x (1 + cos 4x ) + 1 + 1 − cos 3x = 0 ⇔ ( 4 cos2 4x + 4 cos 4x + 1) + 1 − cos 3x = 0 2 ⇔ ( 2 cos 4x + 1) + 1 − cos 3x = 0 1 1 ⎧ ⎧ ⎪cos 4x = − ⎪cos 4x = − 2⇔⎨ 2 ⇔⎨ ⎪cos 3x = 1 ⎪3x = k2π, k ∈ ⎩ ⎩ 1 ⎧ ⎪cos 4x = − 2 ⎪ ⇔⎨ ⎪ x = k2π , k ∈ (coù 3 ñaà u ngoï n cung) ⎪ 3 ⎩ 1 ⎧ cos 4x = − ⎪ 2 ⎪ ⇔⎨ 2π 2π ⎪x = − +m2π hay x = m2π hay x = + m2π , m ∈ ⎪ 3 3 ⎩ 2π ⇔x=± + m2π, m ∈ 3 ( ta nhaä n k = ±1 v aø loaï i k = 0 )B aø i 3 G iaû i phöông trình: sin 2 3x ( cos 3x sin3 x + sin 3x cos3 x ) = sin x sin2 3x ( *) sin 2 x + 3sin 4x T a coù : cos 3x.sin3 3x + sin 3x.cos3 x = ( 4 cos3 x − 3 cos x ) sin 3 x + ( 3 sin x − 4 sin 3 x ) cos3 x = −3 cos x sin 3 x + 3 sin x cos3 x = 3 sin x cos x ( cos2 x − sin 2 x ) 3 3 sin 2x. cos 2x = sin 4x = 2 4 1 Vaä y: ( *) ⇔ sin2 x + sin2 3x = sin x sin2 3x vaø sin 4x ≠ 0 4 2 ⎛1 1 1 ⎞ ⇔ ⎜ sin2 3x − sin x ⎟ − sin4 3x + sin2 3x = 0 vaø sin 4x ≠ 0 ⎝2 4 4 ⎠ 2 ⎛1 1 ⎞ ⇔ ⎜ sin2 3x − sin x ⎟ + sin2 3x (1 − sin2 3x ) = 0 vaø sin 4x ≠ 0 ⎝2 4 ⎠ 2 ⎛1 1 ⎞ ⇔ ⎜ sin 2 3x − sin x ⎟ + sin 2 6x = 0 vaø sin 4x ≠ 0 ⎝2 16 ⎠ ⎧sin 4x ≠ 0 ⎪1 ⎪ ⇔ ⎨ sin2 3x = sin x ⎪2 ⎪sin 3x = 0 ∨ cos 3x = 0 ⎩ ⎧sin 4x ≠ 0 ⎧sin 4x ≠ 0 ⎪ ⎪1 ⎪ ⇔ ⎨sin 3x = 0 ∨ ⎨ = sin x ⎪sin x = 0 (VN) ⎪ 2 ⎩ ⎪sin 3x = ±1 ...
Nội dung trích xuất từ tài liệu:
Tài liệu Chuyên đề phương trình lượng giácwww.laisac.page.tl P Ư N T Ì HL Ợ GG Á PH Ơ G TR N LƯ N GI C HƯƠN RÌN ƯỢN IÁ K Ô GM UM C KH N MẪ MỰ HÔN Ẫ ỰC (khôngrõtácgiả) Tröôøng hôïp 1: TOÅNG HAI SOÁ KHOÂNG AÂM ⎧A ≥ 0 ∧ B ≥ 0 A Ù p duï n g Neá u ⎨ t hì A = B = 0 ⎩A + B = 0B aø i 1 G iaû i phöông trình: 4 cos2 x + 3tg 2 x − 4 3 cos x + 2 3tgx + 4 = 0 (*) T a coù : ( ) +( ) 2 2 (*) ⇔ 2 cos x − 3 3tgx + 1 =0 ⎧ 3 ⎪cos x = 2 ⎪ ⇔⎨ ⎪tgx = − 1 ⎪ 3 ⎩ π ⎧ ⎪ x = ± 6 + k2π, k ∈ ⎪ ⇔⎨ ⎪tgx = − 1 3 ⎪ ⎩ π ⇔x=− + k2π, k ∈ 6B aø i 2 G iaû i phöông trình: 8 cos 4x.cos2 2x + 1 − cos 3x + 1 = 0 ( *) T a coù : ( *) ⇔ 4 cos 4x (1 + cos 4x ) + 1 + 1 − cos 3x = 0 ⇔ ( 4 cos2 4x + 4 cos 4x + 1) + 1 − cos 3x = 0 2 ⇔ ( 2 cos 4x + 1) + 1 − cos 3x = 0 1 1 ⎧ ⎧ ⎪cos 4x = − ⎪cos 4x = − 2⇔⎨ 2 ⇔⎨ ⎪cos 3x = 1 ⎪3x = k2π, k ∈ ⎩ ⎩ 1 ⎧ ⎪cos 4x = − 2 ⎪ ⇔⎨ ⎪ x = k2π , k ∈ (coù 3 ñaà u ngoï n cung) ⎪ 3 ⎩ 1 ⎧ cos 4x = − ⎪ 2 ⎪ ⇔⎨ 2π 2π ⎪x = − +m2π hay x = m2π hay x = + m2π , m ∈ ⎪ 3 3 ⎩ 2π ⇔x=± + m2π, m ∈ 3 ( ta nhaä n k = ±1 v aø loaï i k = 0 )B aø i 3 G iaû i phöông trình: sin 2 3x ( cos 3x sin3 x + sin 3x cos3 x ) = sin x sin2 3x ( *) sin 2 x + 3sin 4x T a coù : cos 3x.sin3 3x + sin 3x.cos3 x = ( 4 cos3 x − 3 cos x ) sin 3 x + ( 3 sin x − 4 sin 3 x ) cos3 x = −3 cos x sin 3 x + 3 sin x cos3 x = 3 sin x cos x ( cos2 x − sin 2 x ) 3 3 sin 2x. cos 2x = sin 4x = 2 4 1 Vaä y: ( *) ⇔ sin2 x + sin2 3x = sin x sin2 3x vaø sin 4x ≠ 0 4 2 ⎛1 1 1 ⎞ ⇔ ⎜ sin2 3x − sin x ⎟ − sin4 3x + sin2 3x = 0 vaø sin 4x ≠ 0 ⎝2 4 4 ⎠ 2 ⎛1 1 ⎞ ⇔ ⎜ sin2 3x − sin x ⎟ + sin2 3x (1 − sin2 3x ) = 0 vaø sin 4x ≠ 0 ⎝2 4 ⎠ 2 ⎛1 1 ⎞ ⇔ ⎜ sin 2 3x − sin x ⎟ + sin 2 6x = 0 vaø sin 4x ≠ 0 ⎝2 16 ⎠ ⎧sin 4x ≠ 0 ⎪1 ⎪ ⇔ ⎨ sin2 3x = sin x ⎪2 ⎪sin 3x = 0 ∨ cos 3x = 0 ⎩ ⎧sin 4x ≠ 0 ⎧sin 4x ≠ 0 ⎪ ⎪1 ⎪ ⇔ ⎨sin 3x = 0 ∨ ⎨ = sin x ⎪sin x = 0 (VN) ⎪ 2 ⎩ ⎪sin 3x = ±1 ...
Tìm kiếm theo từ khóa liên quan:
Tài liệu toán học cách giải bài tập toán phương pháp học toán bài tập toán học cách giải nhanh toánGợi ý tài liệu liên quan:
-
Các phương pháp tìm nhanh đáp án môn Toán: Phần 2
166 trang 191 0 0 -
Tài liệu ôn luyện chuẩn bị cho kỳ thi THPT Quốc gia môn Toán: Phần 2
135 trang 60 0 0 -
22 trang 41 0 0
-
Bộ câu hỏi trắc nghiệm ôn tập cuối năm Môn: Toán lớp 4
15 trang 31 0 0 -
Giáo trình Toán chuyên đề - Bùi Tuấn Khang
156 trang 30 0 0 -
Giáo trình hình thành ứng dụng phân tích xử lý các toán tử trong một biểu thức logic p4
10 trang 30 0 0 -
Tiết 2: NHÂN ĐA THỨC VỚI ĐA THỨC
5 trang 29 0 0 -
Một số bất đẳng thức cơ bản ứng dụng vào bất đẳng thức hình học - 2
29 trang 29 0 0 -
13 trang 29 0 0
-
Các phương pháp tìm nhanh đáp án môn Toán: Phần 1
158 trang 28 0 0