Tài liệu học tập môn Toán 12 - GV. Lê Quang Xe
Số trang: 294
Loại file: pdf
Dung lượng: 3.79 MB
Lượt xem: 11
Lượt tải: 0
Xem trước 10 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
"Tài liệu học tập môn Toán 12" được biên soạn bởi thầy giáo Lê Quang Xe, bao gồm lý thuyết cần nhớ, các dạng toán thường gặp, bài tập rèn luyện và bài tập tự luyện các chủ đề ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Giải tích chương 1. Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Tài liệu học tập môn Toán 12 - GV. Lê Quang Xe GV: LÊ QUANG XETÀI LIỆU HỌC TẬP TOÁN 12(Cập nhật đầy đủ các dạng toán của các năm gần đây) y O x TÀI LIỆU LƯU HÀNH NỘI BỘ 1Muåc luåcPhần I ĐẠI SỐChương 1. ỨNG DỤNG ĐẠO HÀM KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ 1 Bài 1. SỰ ĐỒNG BIẾN NGHỊCH BIẾN CỦA HÀM SỐ 1 A LÝ THUYẾT CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B CÁC DẠNG TOÁN THƯỜNG GẶP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 | Dạng 1. Tìm khoảng đơn điệu của một hàm số cho trước . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 | Dạng 2. Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị của hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 | Dạng 3. Tìm m để hàm số y = ax3 + bx2 + cx + d đơn điệu trên R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ax + b | Dạng 4. Tìm m để hàm y = đơn điệu trên từng khoảng xác định . . . . . . . . . . . . . . . . . . . . 12 cx + d | Dạng 5. Biện luận đơn điệu của hàm đa thức trên khoảng, đoạn cho trước . . . . . . . . . . . . . . . . . 14 | Dạng 6. Biện luận đơn điệu của hàm phân thức trên khoảng, đoạn cho trước . . . . . . . . . . . . . 17 | Dạng 7. Một số bài toán liên quan đến hàm hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 | Dạng 8. Ứng dụng tính đơn điệu của hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 C BÀI TẬP RÈN LUYỆN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 D BÀI TẬP TỰ LUYỆN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Bài 2. CỰC TRỊ CỦA HÀM SỐ 45 A LÝ THUYẾT CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 B CÁC DẠNG TOÁN THƯỜNG GẶP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 | Dạng 1. Ứng dụng đạo hàm (quy tắc 1) để tìm cực trị cực hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 | Dạng 2. Xác định cực trị khi biết bảng biến thiên hoặc đồ thị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 | Dạng 3. Ứng dụng đạo hàm (quy tắc 2) để tìm cực trị cực hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 | Dạng 4. Tìm m để hàm số đạt cực trị tại điểm x0 cho trước . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 | Dạng 5. Biện luận cực trị hàm bậc ba y = ax3 + bx2 + cx + d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 | Dạng 6. Biện luận cực trị hàm trùng phương y = ax4 + bx2 + c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 C BÀI TẬP RÈN LUYỆN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 D BÀI TẬP TỰ LUYỆN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Bài 3. GIÁ TRỊ LỚN NHẤT - NHỎ NHẤT CỦA HÀM SỐ 78 A LÝ THUYẾT CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
Nội dung trích xuất từ tài liệu:
Tài liệu học tập môn Toán 12 - GV. Lê Quang Xe GV: LÊ QUANG XETÀI LIỆU HỌC TẬP TOÁN 12(Cập nhật đầy đủ các dạng toán của các năm gần đây) y O x TÀI LIỆU LƯU HÀNH NỘI BỘ 1Muåc luåcPhần I ĐẠI SỐChương 1. ỨNG DỤNG ĐẠO HÀM KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ 1 Bài 1. SỰ ĐỒNG BIẾN NGHỊCH BIẾN CỦA HÀM SỐ 1 A LÝ THUYẾT CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B CÁC DẠNG TOÁN THƯỜNG GẶP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 | Dạng 1. Tìm khoảng đơn điệu của một hàm số cho trước . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 | Dạng 2. Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị của hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 | Dạng 3. Tìm m để hàm số y = ax3 + bx2 + cx + d đơn điệu trên R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 ax + b | Dạng 4. Tìm m để hàm y = đơn điệu trên từng khoảng xác định . . . . . . . . . . . . . . . . . . . . 12 cx + d | Dạng 5. Biện luận đơn điệu của hàm đa thức trên khoảng, đoạn cho trước . . . . . . . . . . . . . . . . . 14 | Dạng 6. Biện luận đơn điệu của hàm phân thức trên khoảng, đoạn cho trước . . . . . . . . . . . . . 17 | Dạng 7. Một số bài toán liên quan đến hàm hợp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 | Dạng 8. Ứng dụng tính đơn điệu của hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 C BÀI TẬP RÈN LUYỆN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 D BÀI TẬP TỰ LUYỆN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Bài 2. CỰC TRỊ CỦA HÀM SỐ 45 A LÝ THUYẾT CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 B CÁC DẠNG TOÁN THƯỜNG GẶP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 | Dạng 1. Ứng dụng đạo hàm (quy tắc 1) để tìm cực trị cực hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 | Dạng 2. Xác định cực trị khi biết bảng biến thiên hoặc đồ thị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 | Dạng 3. Ứng dụng đạo hàm (quy tắc 2) để tìm cực trị cực hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 | Dạng 4. Tìm m để hàm số đạt cực trị tại điểm x0 cho trước . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 | Dạng 5. Biện luận cực trị hàm bậc ba y = ax3 + bx2 + cx + d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 | Dạng 6. Biện luận cực trị hàm trùng phương y = ax4 + bx2 + c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 C BÀI TẬP RÈN LUYỆN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 D BÀI TẬP TỰ LUYỆN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Bài 3. GIÁ TRỊ LỚN NHẤT - NHỎ NHẤT CỦA HÀM SỐ 78 A LÝ THUYẾT CẦN NHỚ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
Tìm kiếm theo từ khóa liên quan:
Tài liệu môn Toán 12 Ôn tập môn Toán lớp 12 Bài tập môn Toán lớp 12 Kiến thức trọng tâm Toán lớp 12 Bài tập Nguyên hàm Bài tập Tích phân Bài tập Hình học 12Gợi ý tài liệu liên quan:
-
Đề cương ôn tập học kì 2 môn Toán lớp 12 năm 2022-2023 - Trường THPT Uông Bí
24 trang 43 0 0 -
1 trang 32 0 0
-
Đề cương ôn tập học kì 2 môn Toán lớp 12 năm 2020-2021 - Trường THPT Yên Hòa, Hà Nội
66 trang 31 0 0 -
Đề cương ôn tập học kì 2 môn Toán lớp 12 năm 2022-2023 - Trường THPT Hai Bà Trưng, TT Huế
8 trang 28 0 0 -
Nội dung ôn tập học kì 2 môn Toán lớp 12 năm 2022-2023 - Trường THPT Trần Phú - Hoàn Kiếm
30 trang 28 0 0 -
Một số chuyên đề nguyên hàm và tích phân bám sát kỳ thi THPT Quốc gia: Phần 2
112 trang 27 0 0 -
100 Câu trắc nghiệm nguyên hàm tích phân
241 trang 27 0 0 -
200 câu bài tập tích phân - Trần Sỹ Tùng
44 trang 24 0 0 -
Cách tính tích phân một số hàm số vô tỉ
3 trang 24 0 0 -
Tiết 49 BÀI TẬP ÔN TẬP CUỐI NĂM
12 trang 24 0 0