Danh mục

Tổng hợp kiến thức môn toán thi đại học

Số trang: 26      Loại file: doc      Dung lượng: 617.50 KB      Lượt xem: 15      Lượt tải: 0    
tailieu_vip

Hỗ trợ phí lưu trữ khi tải xuống: 15,000 VND Tải xuống file đầy đủ (26 trang) 0

Báo xấu

Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tài liệu ôn thi đại học môn toán gồm tổng hợp kiến thức môn giúp học sinh hệ thống lại toàn bộ kiến thức môn học, nắm vững bài hơn. Tài liệu hay và bổ ích dành cho học sinh hệ THPT ôn thi đại học - cao đẳng tham khảo ôn tập, củng cố kiến thức.
Nội dung trích xuất từ tài liệu:
Tổng hợp kiến thức môn toán thi đại học Ph ạ m Thuỳ Linh – 12A10- THPT KT(06 – 09) I- GIẢI TÍCH TỔ HỢP1. Giai thừa : n! = 1.2...n 0! = 1 n! /(n – k)! = (n – k + 1).(n – k + 2) ... n2. Nguyên tắc cộng : Trường hợp 1 có m cách chọn, trường hợp 2 có n cách chọn; mỗi cách chọn đều thuộc đúng một trường hợp. Khi đó, tổng số cách chọn là : m + n.3. Nguyên tắc nhân : Hiện tượng 1 có m cách chọn, mỗi cách chọn này lại có n cách chọn hiện tượng 2. Khi đó, tổng số cách chọn liên tiếp hai hiện tượng là : m x n.4. Hoán vị : Có n vật khác nhau, xếp vào n chỗ khác nhau. Số cách xếp : P n = n !. k n!5. Tổ hợp : Có n vật khác nhau, chọn ra k vật. Số cách chọn : Cn = k!(n − k)!6. Chỉnh hợp : Có n vật khác nhau. Chọn ra k vật, xếp vào k chỗ khác nhau số n! cách : A n = , A n = Cn .Pk k k k (n − k)! Chỉnh hợp = tổ hợp rồi hoán vị7. Tam giác Pascal : 1 C0 0 0 1 1 C1 C1 1 1 2 1 0 C2 C2 C2 1 2 1 3 3 1 0 C3 C3 C3 C3 1 2 3 1 4 6 4 1 C0 4 C4 C4 C4 C 4 1 2 3 4 Tính chất : C0 = Cn = 1 Cn = Cn−k n n , k n Cn−1 + Cn = Cn+1 k k k8. Nhị thức Newton : * (a + b)n = C0anb0 + C1an−1b1 + ...+ Cna0bn n n n a = b = 1 : ... Cn + Cn + ... + Cn = 2 0 1 n n Với a, b ∈ {± 1, ± 2, ...}, ta chứng minh được nhiều đẳng thức chứa : C0,C1 ,..., n n n Cn * (a + x)n = C0an + C1an−1x + ...+ Cnxn n n n Ta chứng minh được nhiều đẳng thức chứa C0,C1 ,..., n bằng cách : n n Cn - Đạo hàm 1 lần, 2 lần, cho x = ± 1, ± 2, ... a = ± 1, ± 2, ... - Nhân với xk , đạo hàm 1 lần, 2 lần, cho x = ± 1, ± 2, ... , a = ± 1, ± 2, ... ±1 ±2 β - Cho a = ± 1, ± 2, ..., ∫ hay ∫ ... hay ∫ α 0 0 Chú ý : * (a + b)n : a, b chứa x. Tìm số hạng độc lập với x : Ck a n −k b k = Kx m n 1 http://hoiphuonghoangvn.7forum.info Ph ạ m Thuỳ Linh – 12A10- THPT KT(06 – 09) Giải pt : m = 0, ta được k. * (a + b)n : a, b chứa căn . Tìm số hạng hữu tỷ. m r k n −k Can b = Kc d k p q m/ p∈ Z Giải hệ pt :  , tìm được k r / q∈ Z * Giải pt , bpt chứa A n ,Cn ...: đặt điều kiện k, n ∈ N* ..., k ≤ n. Cần biết đơn k k giản các giai thừa, qui đồng mẫu số, đặt thừa số chung. * Cần phân biệt : qui tắc cộng và qui tắc nhân; hoán vị (xếp, không bốc), tổ hợp (bốc, không xếp), chỉnh hợp (bốc rồi xếp). * Áp dụng sơ đồ nhánh để chia trường hợp , tránh trùng lắp hoặc thiếu trường hợp. * Với bài toán tìm số cách chọn thỏa tính chất p mà khi chia trường hợp, ta thấy số cách chọn không thỏa tính chất p ít trường hợp hơn, ta làm như sau : số cách chọn thỏa p. = số cách chọn tùy ý - số cách chọn không thỏa p. Cần viết mệnh đề phủ định p thật chính xác. * Vé số, số biên lai, bảng số xe ... : chữ số 0 có thể đứng đầu (tính từ trái sang phải). * Dấu hiệu chia hết : - Cho 2 : tận cùng là 0, 2, 4, 6, 8. - Cho 4 : tận cùng là 00 hay 2 chữ số cuối hợp thành số chia hết cho 4. ...

Tài liệu được xem nhiều: