Thông tin tài liệu:
Tham khảo tài liệu tuyển tập 55 đề ôn thi đại học năm 2011 môn toán có đáp án - đề số 12, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Tuyển tập 55 đề ôn thi đại học năm 2011 môn Toán có đáp án - Đề số 12 Đề số 12I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)Câu I: (2 điểm) Cho hàm số y x 3 3m 2 x 2m (Cm). 1) Khảo sát sự biến thiên và vẽ đồ thị hàm số khi m = 1 . 2) Tìm m để (Cm) và trục hoành có đúng 2 điểm chung phân biệt.Câu II: (2 điểm) (sin 2 x sin x 4) cos x 2 1) Giải phương trình: 0 2sin x 3 2) Giải phương trình: 8 x 1 2 3 2 x 1 1 2 sin xdxCâu III: (1 điểm) Tính tích phân: I 3 0 (sin x cos x)Câu IV: (1 điểm) Cho khối chóp S.ABC có SA (ABC), ABC vuông cân đỉnh C và SC = a . Tính góc giữa 2 mặt phẳng (SCB) và (ABC) để thể tích khối chóp lớn nhất.Câu V: (1 điểm) Tìm m để phương trình sau đây có đúng 2 nghiệm thực phân biệt: 2 x 2 x (2 x)(2 x ) mII. PHẦN RIÊNG (3 điểm): A. Theo chương trình chuẩn:Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho điểm M(3;1). Viết phương trình đường thẳng d đi qua M cắt các tia Ox, Oy tại A và B sao cho (OA+3OB) nhỏ nhất. 2) Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2;3) và B(3;4;1). Tìm toạ độ điểm M thuộc mặt phẳng (P): x y z 1 0 để MAB là tam giác đều.Câu VII.a: (1 điểm) Tìm hệ số của x20 trong khai triển Newton của biểu thức n 2 1112 1 1 5 Cn Cn Cn ... (1) n 0 n biết rằng: 3 x , Cn n 1 x 2 3 13 B. Theo chương trình nâng cao:Câu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho 4 điểm A(1;0), B(–2;4), C(–1;4), D(3;5). Tìm toạ độ điểm M thuộc đường thẳng ( ) : 3x y 5 0 sao cho hai tam giác MAB, MCD có diện tích bằng nhau. 2) Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ( 1 ) có phương trình x 2t; y t ; z 4 ; ( 2 ) là giao tuyến của 2 mặt phẳng ( ) : x y 3 0 và ( ) : 4 x 4 y 3 z 12 0 . Chứng tỏ hai đường thẳng 1 , 2 chéo nhau và viết phương trình mặt cầu nhận đoạn vuông góc chung của 1 , 2 làm đường kính. x 2 (2m 1) x m 2 m 4Câu VII.b: (1 điểm) Cho hàm số y . Chứng minh rằng 2( x m) với mọi m, hàm số luôn có cực trị và khoảng cách giữa hai điểm cực trị không phụ thuộc m. Hướng dẫn Đề số 12 y coùCÑ, CTCâu I: 2) (Cm) và Ox có đúng 2 điểm chung phân biệt yCÑ 0 hoaë yCT 0 c m 1 (2cos x 1)(sin x cos x 2) 0 Câu II: 1) PT k 2 x 3 2sin x 3 0 2) Đặt 2x u 0; 3 2 x 1 1 v . x 0 u 3 1 2v u 3 1 2v u v 0 PT 3 3 x log 1 5 2 2 u 2u 1 0 v 1 2u (u v )(u uv v 2) 0 2 2 2 2 cos tdt cos xdxCâu III: Đặt t dx dt I x ...