Danh mục

Tuyển tập 55 đề ôn thi đại học năm 2011 môn Toán có đáp án - Đề số 3

Số trang: 6      Loại file: pdf      Dung lượng: 182.10 KB      Lượt xem: 5      Lượt tải: 0    
tailieu_vip

Hỗ trợ phí lưu trữ khi tải xuống: miễn phí Tải xuống file đầy đủ (6 trang) 0
Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu tuyển tập 55 đề ôn thi đại học năm 2011 môn toán có đáp án - đề số 3, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Tuyển tập 55 đề ôn thi đại học năm 2011 môn Toán có đáp án - Đề số 3 Đ ề số 3I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Cho hàm số y  x3  3x2  1 có đồ thị (C).Câu I: (2 điểm) 1. Khảo sát sự biến thiên và vẽ đồ thị (C). 2. Tìm hai điểm A, B thuộc đồ thị (C) sao cho tiếp tuyến của (C) tại A và B song song với nhau và độ dài đoạn AB = 4 2 .Câu II: (2 điểm) 1 1 log ( x  1)8  3log8 (4 x) . 1. Giải phương trình: log ( x  3)  44 2 2   2. Tìm nghiệm trên khoảng  0;  của phương trình:  2 x  3     4sin2      3sin   2 x   1  2cos2  x   2 2 4   Câu III: (1 điểm) Cho hàm số f(x) liên tục trên R và f ( x)  f ( x)  cos4 x với mọi  2  f  x  dx . x  R. Tính: I  2Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là một hình vuông tâm O. Các mặt bên (SAB) và (SAD) vuông góc với đáy (ABCD). Cho AB = a, SA = a 2 . Gọi H, K lần lượt là hình chiếu của A trên SB, SD .Tính thể tích khối chóp O.AHK.Câu V: (1 điểm) Cho bốn số dương a, b, c, d thoả mãn a + b + c + d = 4 . a b c d Chứng minh rằng: 2    2 2 1  d a 1  a2b 2 1 b c 1  c dII. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn.Câu VI.a: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có diện tích bằng 3 , A(2;–3), B(3;–2). Tìm toạ độ điểm C, biết điểm C nằm trên đường thẳng 2 (d): 3x – y – 4 = 0. 2) Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;4;1),B(–1;1;3) và mặt phẳng (P): x – 3y + 2z – 5 = 0. Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P).Câu VII.a: (1 điểm) Tìm các số thực b, c để phương trình z2  bz  c  0 nhận số phức z  1  i làm một nghiệm. B. Theo chương trình nâng caoCâu VI.b: (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có trọng tâm G(2, 0) và phương trình các cạnh AB, AC theo thứ tự là: 4x + y + 14 = 0; 2x  5y  2  0 . Tìm tọa độ các đỉnh A, B, C. 2) Trong không gian với hệ toạ độ Oxyz, cho các điểm A(2,0,0); B(0,4,0); 6x  3y  2z  0 C(2,4,6) và đường thẳng (d)  . Viết phương trình đường 6x  3y  2z  24  0 thẳng  // (d) và cắt các đường thẳng AB, OC.Câu VII.b: (1 điểm) Giải phương trình sau trong tập số phức:z4 – z3  6 z2 – 8z – 16  0 . Hướng dẫn Đề sô 3Câu I: 2) Giả sử A(a; a3  3a2  1), B(b; b3  3b2  1) (a  b) Vì tiếp tuyến của (C) tại A và B song song suy ra y (a)  y (b)  ( a  b)( a  b  2)  0  a  b  2  0  b = 2 – a  a  1 (vì a  b). AB2  (b  a)2  (b3  3b2  1  a3  3a2  1)2 = 4(a  1)6  24( a  1)4  40(a  1)2 AB = 4 2  4(a  1)6  24( a  1)4  40(a  1)2 = 32   a  3  b  1   a  1  b  3  A(3; 1) và B(–1; –3)Câu II: 1) (1)  ( x  3) x  1  4x  x = 3; x = 3  2 3  5 2 x  k ( k  Z ) ( a)     2) (2)  sin  2x    sin   x    18 3  x  5  l 2 (l  Z ) (b) 3 2    6    5 Vì x   0;  nên x= . 18  2      2 2 2 2Câu III: Đặt x = –t   f  x  dx   f  t   dt    f  t  dt   f   x  dx       2 2 2 2    2 2 2  2  f ( x)dx    f ( x)  f (  x)  dx   cos4 xdx      ...

Tài liệu được xem nhiều: