Danh mục

Tuyển tập đề thi học sinh giỏi toán tỉnh Đồng Tháp năm 2000-2009

Số trang: 12      Loại file: pdf      Dung lượng: 206.52 KB      Lượt xem: 19      Lượt tải: 0    
Thư viện của tui

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Tham khảo tài liệu tuyển tập đề thi học sinh giỏi toán tỉnh đồng tháp năm 2000-2009, tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
Tuyển tập đề thi học sinh giỏi toán tỉnh Đồng Tháp năm 2000-2009 TUY N T PTHI H C SINH GI I THPT C P T NH MÔN TOÁN NG THÁPT N M H C 2000-2001 N N M H C 2008-2009 Nguy Nguy n c Tu n ( NDTuanMAT ) NDTuanMAT Tháng 9 Năm 2009 © Nguy n c Tu n – Nickname: NDTuanMAT THI NĂM H C 2000 - 2001Ngày thi: 25 tháng 11Th i gian làm bài: 180 phútBài 1: Cho dãy s xác nh như sau: n 1 un = ∑ ; ∀n ∈ Ν và n ≥ 1 . i =1 i ( i + 1)( i + 2 )( i + 3 )Tìm lim un . x →+∞ 1Bài 2: Cho phương trình: y 3 − 9 y 2 + 11 y − = 0 (1) 3 a. Ch ng minh r ng tan 10 ; tan 50 ; tan 2 700 là 3 nghi m phân bi t c a phương 2 0 2 0 trình (1). b. Tính P = tan 6 100 + tan 6 500 + tan 6 700 .Bài 3: Tìm t t c các a th c P ( x) có h s nguyên sao cho ta có: x.P ( x − 20) = ( x − 2000).P ( x) ; ∀x ∈ Ζ .Bài 4: Cho hình chóp S . ABC nh S ; SA = x ; SB = y ; SC = z . a. Ch ng minh r ng VS . ABC = x. y.z.VS . A B C ; v i SA = SB = SC = 1 ơn v dài. A ; B ; C n m tương ng trên các tia SA; SB; SC . di n tích xung quanh c a hình chóp S . ABC b ng 3k 2 ( k là b. Xác nh x, y, z s th c cho trư c) và th tích c a nó l n nh t.Bài 5: Cho a, b, c là 3 s th c dương và ab + bc + ca = abc .Ch ng minh r ng: a 2 + 2b 2 b 2 + 2c 2 c 2 + 2a 2 + + ≥ 3. ab bc ca 1 © Nguy n c Tu n – Nickname: NDTuanMAT THI NĂM H C 2001 - 2002Ngày thi: 24 tháng 11Th i gian làm bài: 180 phútBài 1: Cho 3 s th c dương a, b, c th a i u ki n abc = 1 .Ch ng minh r ng: 1 + ab 2 1 + bc 2 1 + ca 2 18 + + ≥ 3 3 3. a +b +c 3 3 3 c a bBài 2: Cho x, y là 2 s th a mãn i u ki n: x − 2 y −1 ≤ 0  x + 3y − 6 ≤ 0 2 x + y − 2 ≥ 0  a. Ch ng minh: x 2 + y 2 ≤ 10 . : x 2 + y 2 = 10 . b. Tìm t t c các giá tr c a x, yBài 3: Cho phương trình: x n + x n −1 + x n − 2 + ... + x 2 + x − 1 = 0 (1), n nguyên dương. a. Ch ng minh r ng v i m i n thì phương trình (1) có nghi m dương duy nh t xn . b. Tìm lim xn . x →+∞Bài 4: Cho tam giác ABC có BC > CA > AB . G i D là m t i m n m trên o n BC .Trên ph n n i dài c a BA v phía A ch n i m E . Bi t r ng BD = BE = CA . G i P làgiao i m c a ư ng tròn ngo i ti p tam giác EBD v i c nh AC . G i Q là giao i mth hai c a BP v i ư ng tròn ngo i ti p tam giác ABC . Ch ng minh r ng: a. Tam giác AQC và tam giác EPD là hai tam giác ng d ng. b. Ta có: BP = AQ + CQ .Bài 5: Cho 3 tia Ox, Oy, Oz vuông góc v i nhau ôi m t t o thành góc tam di n Oxyz . nh n m trong góc tam di n. M t m t ph ng (α ) qua M c t Ox, Oy, Oz imM c n các m t ph ng ( OBC ) , ( OCA) , ( OAB )l n lư t t i A, B, C . G i kho ng cách t Ml n lư t là a, b, c . a. Ch ng minh tam giác ABC là tam giác nh n. b. Tính OA, OB, OC theo a, b, c th tích t di n OABC là nh nh t. 2 © Nguy n c Tu n – Nickname: NDTuanMAT THI NĂM H C 2002 - 2003Ngày thi: 24 tháng 11Th i gian làm bài: 180 phútBài 1: a. Cho 4 s th c dương a, b, c, d . Ch ng minh r ng: a+b+c+d a4 b4 c4 d4 + + + ≥ ( a + b ) ( a + b ) (b + c ) (b + c ) ( c + d ) (c + d ) ( d + a ) ( d + a ) 2 2 2 2 2 2 2 2 4 . b. Cho 6 s th c dương a, b, c, d , e, f . Ch ng minh r ng: (a + b + c) + (d + e + f ) 2 2 ≤ a 2 + d 2 + b 2 + e2 + c 2 + f 2 .Bài 2: Kí hi u Ν * là t p các s nguyên dương. Tìm t t c các hàm f : Ν* → Ν * th amãn ng th i hai i u ki n sau: ( i ) : f ( n + 1) > f ( n ) ( ii ) : f ( f ( n ) ) = n + 2002, ∀n ∈ Ν *Bài 3: Cho ...

Tài liệu được xem nhiều: