Danh mục

Ứng dụng của hệ thức Viet vào giải toán

Số trang: 13      Loại file: pdf      Dung lượng: 212.80 KB      Lượt xem: 13      Lượt tải: 0    
tailieu_vip

Xem trước 2 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

" Ứng dụng của hệ thức Viet vào giải toán " giúp cho các em học sinh có thể tự học, tự ôn tập, luyện tập và tự kiểm tra đánh giá năng lực tiếp thu kiến thức, nâng cao khả năng vận dụng kiến thức toán học. Tài liệu hay để các em tham khảo.
Nội dung trích xuất từ tài liệu:
Ứng dụng của hệ thức Viet vào giải toán A. M Đ U Trong m t vài năm tr l i đây thì trong các đ thi vào l p 10 trung h cph thông , các bài toán v phương trình b c hai có s d ng t i h th c Vi- Et xu thi n khá ph bi n . Trong khi đó n i dung và th i lư ng v ph n này trong sách giáokhoa l i r t ít, lư ng bài t p chưa đa d ng . Ta cũng th y đ gi i đư c các bài toán có liên qua đ n h th c Vi – Et,h c sinh c n tích h p nhi u ki n th c v đ i s , thông qua đó h c sinh có cách nhìnt ng quát hơn v hai nghi m c a phương trình b c hai v i các h s . V y nên nhóm toán chúng tôi xây d ng chuyên đ này ngoài m c đíchgiúp h c sinh nâng cao ki n th c còn giúp các em làm quen v i m t s d ng toán cótrong đ thi vào l p 10 trung h c ph thông N i dung chính c a chuyên đ g m : I. ng d ng 1 Nh m nghi m c a phương trình b c hai m t n II. ng d ng 2 L p phương trình b c hai III. ng d ng 3 Tìm hai s bi t t ng và tích c a chúng IV. ng d ng 4 Tính giá tr c a bi u th c nghi m c a phương trình V. ng d ng 5 Tìm h th c liên h gi a hai nghi m c a phương trình sao cho hai nghi m này không ph thu c vào tham s VI. ng d ng 6 Tìm giá tr tham s c a phương trình th a mãn bi u th c ch a nghi m VII. ng d ng 7 Xác đ nh d u các nghi m c a phương trình b c hai VIII. ng d ng 8 Tìm giá tr l n nh t, giá tr nh nh t c a bi u th c nghi m B. N I DUNG CHUYÊN Đ : NG D NG C A H TH C VI-ÉT TRONG GI I TOÁN Cho phương trình b c hai: ax2 + bx + c = 0 (a≠0) (*) −b − ∆ −b + ∆ Có hai nghi m x1 = ; x2 = 2a 2a −b − ∆ − b + ∆ −2b −b Suy ra: x1 + x2 = = = 2a 2a a 2 (−b − ∆ )(−b + ∆ ) b − ∆ 4ac c x1 x2 = = = 2 = 4a 2 4a 2 4a a −b V yđ t: - T ng nghi m là S : S = x1 + x2 = a c - Tích nghi m là P : P = x1 x2 = a Như v y ta th y gi a hai nghi m c a phương trình (*) có liên quan ch t ch v i các h s a, b, c.Đây chính là n i dung c a Đ nh lí VI-ÉT, sau đây ta tìm hi u m t s ng d ng c a đ nh lí này trong gi itoán.I. NH M NGHI M C A PHƯƠNG TRÌNH :1. D ng đ c bi t:Xét phương trình (*) ta th y : a) N u cho x = 1 thì ta có (*) a.12 + b.1 + c = 0 a+b+c=0 c Như vây phương trình có m t nghi m x1 = 1 và nghi m còn l i là x2 = a b) N u cho x = − 1 thì ta có (*) a.( − 1)2 + b( − 1) + c = 0 a − b+c=0 −c Như v y phương trình có m t nghi m là x1 = −1 và nghi m còn l i là x2 = aVí d : Dùng h th c VI-ÉT đ nh m nghi m c a các phương trình sau: 1) 2 x 2 + 5 x + 3 = 0 (1) 2) 3 x 2 + 8 x − 11 = 0 (2)Ta th y : −3 Phương trình (1) có d ng a − b + c = 0 nên có nghi m x1 = −1 và x2 = 2 −11 Phương trình (2) có d ng a + b + c = 0 nên có nghi m x1 = 1 và x2 = 3Bài t p áp d ng: Hãy tìm nhanh nghi m c a các phương trình sau: 1. 35 x 2 − 37 x + 2 = 0 2. 7 x 2 + 500 x − 507 = 0 3. x 2 − 49 x − 50 = 0 4. 4321x 2 + 21x − 4300 = 02. Cho phương trình , có m t h s chưa bi t, cho trư c m t nghi m tìm nghi m còn l i và ch ra h sc a phương trình :Víd : a) Phương trình x 2 − 2 px + 5 = 0 . Có m t nghi m b ng 2, tìm p và nghi m th hai. b) Phương trình x 2 + 5 x + q = 0 có m t nghi m b ng 5, tìm q và nghi m th hai ...

Tài liệu được xem nhiều: