Thông tin tài liệu:
"Bài giảng Kinh tế lượng 1 - Bài 4: Suy diễn từ mô hình hồi quy" gồm 4 nội dung đó là quy luật phân phối xác suất của một số thống kê mẫu; xây dựng khoảng tin cậy cho các hệ số hồi quy; kiểm định giả thuyết về các hệ số hồi quy; kiểm định sự phù hợp của hàm hồi quy.
Nội dung trích xuất từ tài liệu:
Bài giảng Kinh tế lượng 1 - Bài 4: Suy diễn từ mô hình hồi quy Bài 4: Suy diễn từ mô hình hồi quy BÀI 4 SUY DIỄN TỪ MÔ HÌNH HỒI QUY Hướng dẫn học Đây là bài học thứ tư của môn học, tên gọi của nó “Suy diễn từ mô hình hồi quy”, vậy suy diễn từ mô hình hồi quy nghĩa là như thế nào? Ta xét ví dụ: chi tiêu (CT) của hộ gia đình phụ thuộc vào thu nhập (TN) của hộ và số người (SN) trong hộ với mô hình hồi quy tổng thể sau: CT = β1 + β2TN + β3SN + u Trong đó: Biến phụ thuộc CT là chi tiêu của hộ gia đình, biến độc lập TN là thu nhập của hộ gia đình, biến độc lập SN là số người trong hộ. Với mẫu: Wn = {(CT1, TN1, SN1), (CT2, TN2, SN2),…, (CTn, TNn, SNn)} Ta tìm được mô hình hồi quy mẫu: CT 1 2 TN 3 SN e Là ước lượng của mô hình hồi quy tổng thể (xem lại bài 3 đã học). Tuy nhiên các hệ số hồi quy ˆ1 , ˆ2 , ˆ3 trong mô hình hồi quy mẫu lần lượt là các ước lượng điểm của β1, β2, β3 trong mô hình hồi quy tổng thể, tức là ta dùng ˆ1 , ˆ2 , ˆ3 để suy diễn cho β1, β2, β3 theo nghĩa lấy ˆ1 , ˆ2 , ˆ3 thay cho β1, β2, β3. Tuy nhiên trong thực tế bên cạnh việc dùng ước lượng điểm ta còn muốn đánh giá được sai số thì cần có ước lượng khoảng hay ước lượng bằng khoảng tin cậy. Xuất phát từ các hệ số ˆ1 , ˆ2 , ˆ3 của mô hình hồi quy mẫu ta xây dựng một khoảng chứa các tham số β1, β2, β3 của mô hình hồi quy tổng thể với một độ tin cậy cho trước. Đối với bài toán kiểm định giả thuyết, ta chưa có tổng thể nên ta chưa biết β1, β2, β3 tuy nhiên ta có thể giả định các tham số này có thể nhận một giá trị cho trước hay không? Để trả lời câu hỏi này ta cần đến kiến thức ở nội dung thứ 2 của bài này. Nội dung thứ 3 của bài này là kiểm định sự phù hợp của hàm hồi quy. Ta xét mô hình hồi quy 3 biến. CT = β1 + β2TN + β3SN + u Nếu cả hai biến độc lập trong mô hình là TN và SN không giải thích được cho sự biến động của biến phụ thuộc CT, khi ấy ta nói mô hình hồi quy không phù hợp. Ngược lại nếu có ít nhất một biến độc lập TN hay SN có giải thích cho sự biến động của biến phụ thuộc CT, khi ấy ta nói mô hình hồi quy phù hợp. Bài này trình bày lý thuyết và áp dụng lý thuyết thực hành làm bài tập tương ứng với ba nội dung cơ bản của bài toán suy diễn thống kê: Đó là (1) Bài toán xây dựng khoảng tin cậy cho các hệ số hồi quy và (2) Bài toán kiểm định giả thuyết thống kê về các hệ số hồi quy và (3) Bài toán kiểm định sự phù hợp của mô hình hồi quy.TXTOKT04_Bài 4_v1.0015108207 67 Bài 4: Suy diễn từ mô hình hồi quy Để học tốt bài này sinh viên cần thực hiện: Học đúng lịch trình của môn học theo tuần, đọc kĩ các khái niệm. Theo dõi các ví dụ và tính toán lại các kết quả. Đọc tài liệu: Nguyễn Quang Dong, Nguyễn Thị Minh, 2012, Giáo trình kinh tế lượng, NXB Đại học Kinh tế quốc dân. Sinh viên tự học, làm việc theo nhóm, trao đổi với giảng viên. Tham khảo các thông tin từ trang Web của môn học. Nội dung: Quy luật phân phối xác suất của một số thống kê mẫu; Xây dựng khoảng tin cậy cho các hệ số hồi quy; Kiểm định giả thuyết về các hệ số hồi quy; Kiểm định sự phù hợp của hàm hồi quy. Mục tiêu Sau khi học xong bài này, sinh viên cần đảm bảo được các yêu cầu sau: Hiểu rõ ý nghĩa của công thức ước lượng. Vận dụng công thức ước lượng làm được bài tập với tình huống cụ thể. Biết kết luận hoặc biết trả lời câu hỏi từ kết quả ước lượng. Hiểu rõ ý nghĩa của từng cặp giả thuyết. Tính được giá trị quan sát của tiêu chuẩn kiểm định và xác định được miền bác bỏ giả thuyết H0 tương ứng với từng cặp giả thuyết. Biết so sánh giá trị quan sát của tiêu chuẩn kiểm định với giá trị tới hạn để xác định giá trị đó có thuộc miền bác bỏ giả thuyết H0 hay không. Biết kết luận và trả lời câu hỏi.68 TXTOKT04_Bài 4_v1.0015108207 Bài 4: Suy diễn từ mô hình hồi quyTình huống dẫn nhậpTình huống 1: Giả sử ta có số liệu của 100 hộ gia đình STT CT TN SN STT CT TN SN STT CT TN SN 1 97 107 2 41 172 149 4 81 273 285 5 2 100 118 2 42 156 162 4 82 276 290 5 3 100 119 2 43 ...