Danh mục

Bài giảng Phương pháp số - Chương 2: Các phương pháp số trong đại số tuyến tính

Số trang: 29      Loại file: pdf      Dung lượng: 470.69 KB      Lượt xem: 12      Lượt tải: 0    
10.10.2023

Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng Phương pháp số - Chương 2: Các phương pháp số trong đại số tuyến tính trình bày các nội dung chính sau: Phương pháp tìm nghiệm đúng, nghiệm xấp xỉ của hệ phương trình tuyến tính, ứng dụng các phương pháp trên vào việc tính định thức của ma trận, tìm ma trận nghịch đảo, giải quyết các bài toán thực tế, đánh giá sai số của từng phương pháp.
Nội dung trích xuất từ tài liệu:
Bài giảng Phương pháp số - Chương 2: Các phương pháp số trong đại số tuyến tính Chương 2: Các phương pháp số trong đại số tuyến tính CHƯƠNG 2 CÁC PHƯƠNG PHÁP SỐ TRONG ĐẠI SỐ TUYẾN TÍNH MỤC ĐÍCH, YÊU CẦU: Sau khi nghiên cứu chương 1, yêu cầu sinh viên: 1. Hiểu và nắm được các phương pháp tìm nghiệm đúng, nghiệm xấp xỉ của hệ phương trình tuyến tính. 2. Biết cách ứng dụng các phương pháp trên vào việc tính định thức của ma trận, tìm ma trận nghịch đảo, giải quyết các bài toán thực tế. 3. Biết cách đánh giá sai số của từng phương pháp 2.1. MA TRẬN VÀ ĐỊNH THỨC 2.1.1. Ma trận Cho ma trận chữ nhật A cấp m x n: a11 a12 ... a1n a21 a22 ... a2n A= . . ... . am1 am2 ... amn ở đây aij là các số thực. Ma trận này có m hàng và n cột. Khi m = n ta có ma trận cấp nxn và được gọi tắt là ma trận vuông cấp n. Ma trận vuông cấp n mà mọi phần tử nằm ngoài đường chéo chính bằng 0, tức là aij = aji = 0 với i ≠ j, được gọi là ma trận đường chéo. Nếu ma trận đường chéo có aii = 1 thì ta gọi A là ma trận đơn vị và ta thường ký hiệu là E hoặc I. Ma trận vuông A được gọi là ma trận tam giác trên, nếu A có dạng a11 a12 ... a1n 0 a22 ... a2n A= . . ... . 0 0 ... ann 13 CuuDuongThanCong.com https://fb.com/tailieudientucntt Chương 2: Các phương pháp số trong đại số tuyến tính Tương tự, ma trận vuông A được gọi là ma trận tam giác dưới, nếu A có dạng: a11 0 ... 0 a21 a22 ... 0 A= . . ... . an1 an2 ... ann Ma trận chữ nhật AT cấp n x m được gọi là ma trận chuyển vị của ma trận A cấp m x n nếu: a11 a21 ... am1 a12 a22 ... am2 AT = . . ... . a1n a2n ... amn 2.1.2. Định thức của ma trận Trước khi đưa ra định nghĩa định thức của ma trận, chúng tôi giới thiệu khái niệm hoán vị chẵn, hoán vị lẻ của một tập hợp n số nguyên {1, 2, ... , n}. Cho α = (i1, i2,..., in) là một hoán vị của tập {1,2,...,n}. Ta xét tất cả các cặp (ik, ih), trong đó k < h. Nếu ik > ih thì ta gọi cặp (ik, ih) là cặp ngược, tức là các giá trị ik, ih được sắp xếp ngược với k,h. Nếu trong α số cặp ngược là chẵn thì ta gọi α là hoán vị chẵn, ngược lại thì ta gọi α là hoán vị lẻ. Với mỗi ma trận vuông A cấp n: a11 a12 ... a1n a21 a22 ... a2n A= . . ... . an1 an2 ... ann tồn tại một số thực được gọi là định thức của ma trận A, ký hiệu là det A, được xác định bởi công thức: det A = ∑ α s(i1, i2,..., in) a 1i1 a 2i2 ...a nin (2.0) với α = (i1, i2,..., in) chạy trong tập tất cả các hoán vị của tập {1,2,...,n}, và 1 nếu α là hoán vị chẵn s(i1, i2,..., in) = -1 nếu α là hoán vị lẻ 14 CuuDuongThanCong.com https://fb.com/tailieudientucntt Chương 2: Các phương pháp số trong đại số tuyến tính Định thức của ma trận còn được ký hiệu là a11 a12 ... a1n a21 a22 ... a2n A= . . ... . an1 an2 ... ann Với mỗi ma trận chữ nhật A cấp m x n bất kỳ ta có thể tính định thức của tất cả các ma trận con vuông cấp k, với k ≤ min (m, n). Nếu tồn tại một số r sao cho có một ma trận con cấp r c ...

Tài liệu được xem nhiều:

Tài liệu cùng danh mục:

Tài liệu mới: