Bài giảng Toán A1: Chương 3 - ThS. Huỳnh Văn Kha
Số trang: 52
Loại file: pdf
Dung lượng: 1.42 MB
Lượt xem: 16
Lượt tải: 0
Xem trước 6 trang đầu tiên của tài liệu này:
Thông tin tài liệu:
Bài giảng Toán A1 - Chương 3 trang bị cho người học một số kiên thức cơ bản về tích phân. Các nội dung chính trong chương này gồm có: Bài toán tính diện tích – định nghĩa tích phân, định lý cơ bản của vi tích phân, nguyên hàm, đổi biến và tích phân từng phần – tính tích phân, tích phân suy rộng,... Mời các bạn cùng tham khảo.
Nội dung trích xuất từ tài liệu:
Bài giảng Toán A1: Chương 3 - ThS. Huỳnh Văn Kha Chương 3 TÍCH PHÂN Huỳnh Văn Kha Khoa Toán – Thống Kê Toán A1 - MS: 501001Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 1 / 51 Nội dung 1 Tích phân Bài toán tính diện tích – Định nghĩa tích phân Định lý cơ bản của vi tích phân Nguyên hàm Đổi biến và tích phân từng phần – Tính tích phân 2 Tích phân suy rộng Tích phân suy rộng loại I Tích phân suy rộng loại II Các tiêu chuẩn hội tụ 3 Ứng dụng của tích phân Tính diện tích, thể tích vật thể tròn xoay, độ dài đường congHuỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 1 / 51 Bài toán tìm diện tíchHuỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 2 / 51Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 3 / 51 Thay vì lấy giá trị của f tại các đầu mút xi như trên, ta có thể chọn tại điểm bất kỳ xi∗ ∈ [xi−1 , xi ].Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 4 / 51 Định nghĩa tích phân Định nghĩa tích phân Cho f là hàm xác định trên [a, b], ta chia [a, b] thành n khoảng con với độ rộng ∆x = (b − a)/n. Gọi x0 (= a) < x1 < x2 < · · · < xn (= b) là các đầu mút của của các khoảng con đó. Trên mỗi khoảng con ta lấy xi∗ ∈ [xi−1 , xi ]. Thì tích phân (xác định) của f từ a tới b được định nghĩa là: Z b Xn f (x)dx = lim f (xi∗ )∆x a n→∞ i=1 nếu nó tồn tại. Nếu tích phân của f tồn tại, ta nói f khả tích.Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 5 / 51 Ký hiệu dx chỉ nói lên rằng x là biến độc lập. Bản thân dx trong Z ký hiệu tíchZ phân khôngZmang nghĩa gì cả. Cho b b b nên: f (x)dx = f (u)du = f (t)dt = . . . a a aHuỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 6 / 51 Các tính chất của tích phân Z b kdx = k(b − a) với c là hằng số. Za a Z b Z a f (x)dx = − f (x)dx; f (x)dx = 0 b a a Cho f , g khả tích trên [a, b], k ∈ R khi đó: Z b Z b Z b 1. [f (x) + kg (x)]dx = f (x)dx + k g (x)dx a a a 2. Nếu c ∈ (a, b) thì f cũng khả tích trên các khoảng [a, c] và [c, b]. Và khi đó: Z b Z c Z b f (x)dx = f (x)dx + f (x)dx a a cHuỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 7 / 51 Z b 3. Nếu f (x) ≥ 0, ∀x ∈ [a, b] thì f (x)dx ≥ 0. a Suy ra nếu f (x) ≥ g (x), ∀x ∈ [a, b] thì Z b Z b f (x)dx ≥ g (x)dx a a Z Z b b 4. Hàm |f | khả tích và |f (x)|dx ≥ f (x)dx a a Định lý Nếu f liên tục trên [a, b] hoặc chỉ gián đoạn (loại 1) tại một số hữu hạn các điểm, thì f khả tích trên [a, b] Như vậy các hàm sơ cấp đều khả tích.Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 8 / 51 Định lý cơ bản của vi tích phân Định lý cơ bản của vi tích phân 1 Z x Cho f liên tục trên [a, b], đặt: F (x) = f (t)dt a (a ≤ x ≤ b). Thì F liên tục trên [a, b], khả vi trên (a, b) và F 0 (x) = f (x). Ví dụ: Tính đạo hàm của Z xp 1. F (x) = 1 + t 2 dt. 0 Z x4 dt 2. F (x) = . 1 2 + cos(e t )Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 9 / 51
Nội dung trích xuất từ tài liệu:
Bài giảng Toán A1: Chương 3 - ThS. Huỳnh Văn Kha Chương 3 TÍCH PHÂN Huỳnh Văn Kha Khoa Toán – Thống Kê Toán A1 - MS: 501001Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 1 / 51 Nội dung 1 Tích phân Bài toán tính diện tích – Định nghĩa tích phân Định lý cơ bản của vi tích phân Nguyên hàm Đổi biến và tích phân từng phần – Tính tích phân 2 Tích phân suy rộng Tích phân suy rộng loại I Tích phân suy rộng loại II Các tiêu chuẩn hội tụ 3 Ứng dụng của tích phân Tính diện tích, thể tích vật thể tròn xoay, độ dài đường congHuỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 1 / 51 Bài toán tìm diện tíchHuỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 2 / 51Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 3 / 51 Thay vì lấy giá trị của f tại các đầu mút xi như trên, ta có thể chọn tại điểm bất kỳ xi∗ ∈ [xi−1 , xi ].Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 4 / 51 Định nghĩa tích phân Định nghĩa tích phân Cho f là hàm xác định trên [a, b], ta chia [a, b] thành n khoảng con với độ rộng ∆x = (b − a)/n. Gọi x0 (= a) < x1 < x2 < · · · < xn (= b) là các đầu mút của của các khoảng con đó. Trên mỗi khoảng con ta lấy xi∗ ∈ [xi−1 , xi ]. Thì tích phân (xác định) của f từ a tới b được định nghĩa là: Z b Xn f (x)dx = lim f (xi∗ )∆x a n→∞ i=1 nếu nó tồn tại. Nếu tích phân của f tồn tại, ta nói f khả tích.Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 5 / 51 Ký hiệu dx chỉ nói lên rằng x là biến độc lập. Bản thân dx trong Z ký hiệu tíchZ phân khôngZmang nghĩa gì cả. Cho b b b nên: f (x)dx = f (u)du = f (t)dt = . . . a a aHuỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 6 / 51 Các tính chất của tích phân Z b kdx = k(b − a) với c là hằng số. Za a Z b Z a f (x)dx = − f (x)dx; f (x)dx = 0 b a a Cho f , g khả tích trên [a, b], k ∈ R khi đó: Z b Z b Z b 1. [f (x) + kg (x)]dx = f (x)dx + k g (x)dx a a a 2. Nếu c ∈ (a, b) thì f cũng khả tích trên các khoảng [a, c] và [c, b]. Và khi đó: Z b Z c Z b f (x)dx = f (x)dx + f (x)dx a a cHuỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 7 / 51 Z b 3. Nếu f (x) ≥ 0, ∀x ∈ [a, b] thì f (x)dx ≥ 0. a Suy ra nếu f (x) ≥ g (x), ∀x ∈ [a, b] thì Z b Z b f (x)dx ≥ g (x)dx a a Z Z b b 4. Hàm |f | khả tích và |f (x)|dx ≥ f (x)dx a a Định lý Nếu f liên tục trên [a, b] hoặc chỉ gián đoạn (loại 1) tại một số hữu hạn các điểm, thì f khả tích trên [a, b] Như vậy các hàm sơ cấp đều khả tích.Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 8 / 51 Định lý cơ bản của vi tích phân Định lý cơ bản của vi tích phân 1 Z x Cho f liên tục trên [a, b], đặt: F (x) = f (t)dt a (a ≤ x ≤ b). Thì F liên tục trên [a, b], khả vi trên (a, b) và F 0 (x) = f (x). Ví dụ: Tính đạo hàm của Z xp 1. F (x) = 1 + t 2 dt. 0 Z x4 dt 2. F (x) = . 1 2 + cos(e t )Huỳnh Văn Kha (Khoa Toán – Thống Kê) Chương 3: Tích phân Toán A1 - MS: 501001 9 / 51
Tìm kiếm theo từ khóa liên quan:
Bài giảng Toán A1 Toán tích phân Tích phân suy rộng Tính tích phân Tích phân suy rộng loại I Tích phân suy rộng loại IIGợi ý tài liệu liên quan:
-
Đề ôn thi Đại học môn Toán - Trần Sĩ Tùng - Đề số 16
1 trang 105 0 0 -
Giáo trình Toán cao cấp A1: Phần 2 - ĐH Sư phạm Kỹ thuật TPHCM
139 trang 43 0 0 -
Bài giảng Toán cao cấp 2 (Phần Giải tích): Bài 2 - Nguyễn Phương
54 trang 37 0 0 -
Giáo trình Toán cao cấp A1: Phần 2
61 trang 36 0 0 -
Bài giảng Giải tích B1: Chương 2 - Cao Nghi Thục
37 trang 34 0 0 -
Bài giảng Giải tích cao cấp: Chương 4 - Lê Thái Duy
112 trang 33 0 0 -
Bài giảng Toán cao cấp 1 - Trường ĐH Công nghiệp Thực Phẩm
65 trang 33 0 0 -
1 trang 32 0 0
-
Bài giảng Vi tích phân 1C: Chương 4 - Cao Nghi Thục
61 trang 32 0 0 -
Đề thi kết thúc học phần Toán cao cấp năm 2019 - Đề số 3 (31/05/2019)
1 trang 32 0 0