Danh mục

Bài giảng Xác suất thống kê - Chương 1: Đại cương về xác suất

Số trang: 26      Loại file: pdf      Dung lượng: 436.45 KB      Lượt xem: 18      Lượt tải: 0    
tailieu_vip

Hỗ trợ phí lưu trữ khi tải xuống: 12,000 VND Tải xuống file đầy đủ (26 trang) 0
Xem trước 3 trang đầu tiên của tài liệu này:

Thông tin tài liệu:

Bài giảng Xác suất thống kê - Chương 1: Đại cương về xác suất nhằm trình bày về các nội dung chính: không gian mẫu và biến cố, định nghĩa xác suất, xác suất có điều kiện, công thức nhân xác suất, các biến cố độc lập và công thức Bayes.
Nội dung trích xuất từ tài liệu:
Bài giảng Xác suất thống kê - Chương 1: Đại cương về xác suất Chương 1 ĐẠI CƯƠNG VỀ XÁC SUẤT  Không gian mẫu và biến cố  Định nghĩa xác suất  Xác suất có điều kiện  Công thức nhân xác suất  Các biến cố độc lập  Công thức Bayes Không gian mẫu và biến cố • Phép thử là một khái niệm cơ bản không định nghĩa. Ta hiểu phép thử là một thí nghiệm hay quan sát nào đó. • Phép thử được gọi là ngẫu nhiên nếu ta không dự báo trước kết quả nào sẽ xảy ra. • Thường trong mỗi phép thử có thể có nhiều kết quả khác nhau. • Tập hợp gồm tất cả các kết quả của phép thử được gọi là không gian mẫu của phép thử và được ký hiệu là S. Không gian mẫu và biến cố • Mỗi tập con của không gian mẫu được gọi là một biến cố. • Biến cố chỉ gồm một kết quả được gọi là biến cố sơ cấp. • Chú ý: Thông thường ta xem biến cố sơ cấp và kết quả là một. • Ký hiệu:  : biến cố sơ cấp S : Không gian mẫu A, B, C,…: biến cố Không gian mẫu và biến cố Ví dụ : Gieo một đồng tiền xu một lần. Xác định không gian mẫu. Ví dụ : Gieo một đồng tiền xu hai lần. Xác định không gian mẫu. Ví dụ : Gieo một con xúc xắc một lần. Gọi làBi kết quả “Mặt trên của nó có i chấm”. Xác định không gian mẫu. Ví dụ : Gieo một con xúc xắc liên tiếp hai lần. Xác định không gian mẫu. Ví dụ : Gieo một con xúc xắc một lần. Gọi A là biến cố “mặt trên của con xúc xắc có số chấm chẵn”. Xác định A. Không gian mẫu và biến cố • Phép thử có không gian mẫu S và biến cố A. Biến cố A xảy ra khi có một kết quả nào đó của A xảy ra. • S được gọi là biến cố chắc chắn;  được gọi là biến cố không. • Quan hệ kéo theo: A  B A  B • Quan hệ tương đương: A  B   B  A • Tổng, hiệu, tích: A  B,A  B,AB • Xung khắc: AB   • Đối lập: A  S  A, A  B  A.B, A.B  A  B Định nghĩa xác suất cổ điển Phép thử có không gian mẫu   1, 2 , , n  mà các biến cố sơ cấp đồng khả năng. Biến cố A gồm m là số biến cố sơ cấp có xác suất là m A P(A)   n  Số m được gọi là số trường hợp thuận lợi cho A. Ví dụ : Gieo con xúc xắc cân đối và đồng chất. Tính xác suất để: 1. Mặt trên con xúc xắc có một chấm; 2. Mặt trên con xúc xắc có số chấm là số chẵn. Định nghĩa xác suất cổ điển Ví dụ : Một lớp học có 30 học sinh, trong đó có 10 nữ. Chọn ngẫu nhiên 3 người trực lớp. Tính xác suất của biến cố trong 3 người được chọn có đúng 1 người nữ. Ví dụ : Một lô hàng gồm 10 sản phẩm, trong đó có 3 sản phẩm xấu. a. Lấy ngẫu nhiên 1 sản phẩm từ lô hàng. Tính xác suất để lấy được sản phẩm tốt. b. Lấy ngẫu nhiên, không hoàn lại, 4 sản phẩm từ lô hàng. Tính xác suất để trong 4 sản phẩm lấy ra có đúng 2 sản phẩm tốt. Định nghĩa xác suất bằng hình học Độ đo: Ta gọi độ đo của một tập trên một đường là độ dài, trong một mặt là diện tích, trong không gian là thể tích của tập đó. Quy ước: Trong một mặt phẳng, tập nằm trên đường có độ đo bằng 0; trong một không gian, tập nằm trên mặt có độ đo bằng 0. Định nghĩa: Cho tập S, khác rỗng và D là tập con của S. Gọi A là biến cố “điểm M thuộc D”. Ta định nghĩa m(D) P(A)  m(S) m(D) độ đo của D. Định nghĩa xác suất bằng thống kê Giả sử ta thực hiện n lần một phép thử, biến cố A xuất hiện k lần. Ta gọi k fn (A)  n là tần suất của biến cố A trong n phép thử. Ta định nghĩa P(A)  lim fn (A) n Ví dụ : Quan sát 10 000 em bé mới sinh, thấy có 5097 bé trai. Gọi A là biến cố em bé mới sinh là con trai. Tính P(A). Công thức cộng xác suất 1. P()  0 2. P()  1 3. 0  P(A)  1 Công thức cộng xác suất Giả sử A và B là hai biến cố trong một phép thử. Ta có P(A  B)  P(A)  P(B)  P(AB) (1) Hệ quả: P(A  B)  P(A)  P(B),AB   (2) P(A)  1  P(A) Khái quát cho (1) và (2)! Công thức cộng xác suất Ví dụ : Một lớp có 50 học sinh trong đó có 20 học sinh giỏi văn, 25 học sinh giỏi toán, 10 học sinh giỏi cả văn và toán. Chọn ngẫu nhiên một học sinh của lớp. Tính xác suất học sinh này giỏi văn hoặc giỏi toán Ví dụ : Một hộp đựng 10 bi, trong đó có 4 bi đỏ. Lấy ngẫu nhiên 3 bi từ hộp. Tính xác suất để: a. Không có bi đỏ b. Có ít nhất 1 bi đỏ. Xác suất có điều kiện Ví dụ : Gieo một con xúc xắc cân đối và đồng chất hai lần. Gọi A là biến cố “lần gieo đầu xuất hiện mặt một chấm”, B là biến cố “tổng số chấm trong hai lần gieo không vượt quá 3”.Ta thấy S  (i, j) : 1  i, j  6 B  (1,1);(1,2);(2,1) A  (1,1);(1,2);(1,3);(1,4);(1,5);(1  ,6); 6 3 2 P(A)  P(B)  P(AB)  ...

Tài liệu được xem nhiều: