Bài tập về giới hạn dãy số
Thông tin tài liệu:
Nội dung trích xuất từ tài liệu:
Bài tập về giới hạn dãy số Giới hạn dãy số a)Chứng minh rằng (un) bị chặn trên bởi 1 và là dãy số tăng b)Suy ra (un) có giới hạn và tính giới hạn đó *Các giới hạn thường gặp: 6.Tìm các số hữu tỉ sau : limC = C ; lim= 0 α > 0 ; lim = 0 ; limqn = 0 |q| < 1 a) 2,1111111... b)1,030303030303... c)3,1515151515....*Các phép toán giới hạn : 7.Tính lim(1 – ).(1 – ).(1 – )…(1 – ) lim(un ± vn) = limun ± limvn ; lim(un.vn) = limun ; 8. Cho dãy (xn) thỏa 0 < xn < 1 và xn+1(1 – xn) ≥ Chứng minh rằng: dãy số (xn) tăng. Tính limxn limvnlim = 9. Cho dãy (xn) thỏa 1 < xn < 2 và xn+1 = 1 + xn – xn2 ∀n ∈ N*Các định lý về giới hạn: a)Chứng minh rằng: |xn – | < ()n ∀n ≥ 3Định lý 1: Một dãy số tăng và bị chặn trên thì có giới hạn b) Tính limxn Một dãy số giảm và bị chặn dưới thì có giới hạn 10.Cho dãy số xác định bởi : u1 = ; un +1=Định lý 2: Cho 3 dãy số (un),(vn) và (wn) a) Chứng minh rằng: un < 1 ∀n b) Chứng minh rằng: (un) tăng và bị chặn trên Nếu ∀n ta có un ≤ vn ≤ wn và limun = limwn = A thì limvn = A c) Tính limunĐịnh lý 3: Nếu limun = 0 thì lim = ∞ 11.Cho dãy số (un) xác định bởi công thức u1 = và un +1= Nếu limun = ∞ thì lim = 0 a) Chứng minh rằng un < 3 ∀ n*Tổng của cấp số nhân lùi vô hạn là S = b)Chứng minh rằng: (un) tăng và bị chặn trên1.Dùng định nghĩa,tính các giới hạn sau: c) Tính limun a) lim b) lim c) lim 2.Tính các giới hạn sau: Giới hạn hàm số a) lim b) lim c) lim *Các phép toán về giới hạn hàm số 2n − 3 lim [ f (x) ± g(x) ] = lim f (x) ± lim g(x) d) lim e) lim 3 3 n − 2n + 1 x →a x →a x →a lim [ f (x).g(x) ] = lim f (x).lim g(x) f)lim() g) lim x →a x →a 3.Tính các giới hạn sau: x →a a) lim b) lim() c) lim) lim f (x) f (x) d) lim) e) lim = x →a lim f (x) = lim f (x) lim x → a g(x) lim g(x) x →a x →a n + n + n + 3 n +1 3 3 2 2 x →a f) lim g) lim n 3 +1 *Các định lý về giới hạn hàm số : h) lim i) lim() Định lý 1:Nếu hàm số có giới hạn thì giới hạn đó là duy nhất j) lim n() k) lim( 3 n 3 − 2n 2 − n ) Định lý 2:Cho 3 hàm số g(x),f(x),h(x) cùng xác định trong khoảng Kl) lim m) lim(1 + n2 – ) chứa a và g(x) ≤ f(x) ≤ h(x). Nếu lim g(x) = lim h(x) = L thì x →a x →an) lim lim f (x) = L4.Tính các giới hạn x →aa) lim b) lim c) lim 1 Định lý 3: Nếu lim f (x) = 0 thì lim =∞d) lim e) lim f) lim f (x) ...
Tìm kiếm theo từ khóa liên quan:
giới hạn dãy số bài tập về giới hạn ôn thi đai học môn toán đề cương ôn thi toán công thức toán 12Gợi ý tài liệu liên quan:
-
Giáo án Đại số lớp 11: Giới hạn dãy số
37 trang 67 0 0 -
150 đề thi thử đại học môn Toán
155 trang 49 0 0 -
Chuyên đề tổng ôn tập hướng đến kỳ thi đại học Toán 11
468 trang 41 0 0 -
Đề cương ôn tập học kì 2 môn Toán lớp 11 năm 2022-2023 - Trường THPT Uông Bí
19 trang 39 0 0 -
PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH CHỨA CĂN
3 trang 39 0 0 -
9 trang 36 0 0
-
Phương pháp tìm giới hạn dãy số cho bởi công thức truy hồi bằng đồ thị hàm số
7 trang 35 0 0 -
Bài giảng Toán cao cấp C2: Phần 1 - Trường ĐH Võ Trường Toản
48 trang 35 0 0 -
Đề cương giữa học kì 2 môn Toán lớp 11 năm 2022-2023 - Trường THPT Bắc Thăng Long
11 trang 33 0 0 -
Bài giảng giải tích 1 - ThS. Nguyễn Hữu Hiệp
111 trang 32 0 0 -
Đề cương ôn tập giữa học kì 2 môn Toán lớp 11 năm 2022-2023 - Trường THPT Nguyễn Bỉnh Khiêm
8 trang 32 0 0 -
GIÁO TRÌNH MATLAB (phụ lục lệnh và hàm)
8 trang 29 0 0 -
Phương trình đường thẳng trong không gian
14 trang 28 0 0 -
Bài tập - Phương trình đường thẳng
7 trang 28 0 0 -
Một số phương pháp và bài tập giải phương trình vô tỷ
41 trang 28 0 0 -
Đề thi tốt nghiệp bổ túc THPT môn Toán năm 2004 - Bộ GDĐT
1 trang 27 0 0 -
Nội dung ôn tập học kì 2 môn Toán lớp 11 năm 2022-2023 - Trường THPT Trần Phú - Hoàn Kiếm
16 trang 26 0 0 -
68 trang 24 0 0
-
160 trang 23 0 0
-
Bài giảng Vi tích phân 1B: Chuỗi số
56 trang 23 0 0