Thông tin tài liệu:
Tham khảo tài liệu chuyên đề ôn thi đh, cđ - lượng giác, tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Nội dung trích xuất từ tài liệu:
CHUYÊN ĐỀ ÔN THI ĐH, CĐ - LƯỢNG GIÁC www.VNMATH.comChuyên đề LƯỢNG GIÁC Phần 1: CÔNG THỨC1. Hệ thức LG cơ bảnsin 2 α + cos 2 α = 1 tan α .cot α = 1 sin α �π cos α � (α kπ )tan α = α + kπ � cot α = � cos α sin α �2 � 1 �π 1 � = cot 2 α + 1 ( α kπ ) = tan 2 α + 1�α + kπ � sin α 2 cos α 2 �2 �2. Công thức LG thường gặp sin ( a b ) = sinacosb sinbcosa cos ( a b ) = cos a cos b msinasinbCông thức cộng: tana tanb tan ( a b ) = 1 mtanatanb sin 2a = 2sin a.cos a cos 2a = cos 2 a − sin 2 a = 2 cos 2 a − 1 = 1 − 2sin 2 a cos 3a = 4 cos 3 a − 3cos aCông thức nhân: sin 3a = 3sin a − 4sin 3 a 3 tan a − tan 3 a tan 3a = 1 − 3 tan 2 a 1Tích thành tổng: [cos(a−b)+cos(a+b)] cosa.cosb = 2 1 sina.sinb = [cos(a−b)−cos(a+b)] 2 1 sina.cosb = [sin(a−b)+sin(a+b)] 2 a+b a−bTổng thành tích: sin a + sin b = 2sin cos 2 2 a+b a−b sin a − sin b = 2 cos sin 2 2 a+b a −b cos a + cos b = 2 cos cos 2 2 a+b a −b cos a − cos b = −2sin sin 2 2 sin(a b) tan a tan b = cos a.cos b 1Công thức hạ bậc: cos2a = (1+cos2a) 2 1 sin2a = (1−cos2a) 2 aBiểu diễn các hàm số LG theo t = tan 2 1Chuyên đề: LG Thái Thanh Tùng www.VNMATH.com 1- t 2 2t 2t sin a = ; cos a = ; tan a = . 1+ t 1+ t 1− t2 2 23. Phương trìng LG cơ bản u = v + k 2π * cosu=cosv⇔u=± v+k2π * sinu=sinv u = π − v + k 2π * cotu=cotv ⇔ u=v+kπ ( k Z ) . * tanu=tanv ⇔ u=v+kπ4. Một số phương trình LG thường gặp1. Phương trình bậc nhất, bậc hai đối với một hàm số lượng giác: a. Phương trình bậc nhất đối với một hàm số lượng giác: để giải các phương trình này ta dùngcác công thức LG để đưa phương trình về phương trình LG cơ bản. b. Phương trình bậc hai đối với một hàm số lượng giác: là nh ững ph ương trình có d ạnga.sin2x+b.sinx+c=0 (hoặc a.cos2x+b.cosx+c=0, a.tan2x+b.tanx+c=0, a.cot2x+b.cotx+c=0) để giải cácphương trình này ta đặt t bằng hàm số LG..2. Phương trình bậc nhất đối với sinx và cosx:Dạng: asinx+bcosx=c. Điều kiện để phương trình có nghiệm là a 2 + b 2 c 2 . b ...